Pharmacopsychiatry 2018; 51(06): 229-242
DOI: 10.1055/s-0043-118665
Review
© Georg Thieme Verlag KG Stuttgart · New York

Role of Glutamatergic System in Obsessive-Compulsive Disorder with Possible Therapeutic Implications

Přemysl Vlček
1   National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
2   Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic
,
Jakub Polák
1   National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
,
Martin Brunovský
1   National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
2   Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic
,
Jiří Horáček
1   National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
2   Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 26. Juni 2017
revised 07. August 2017

accepted 11. August 2017

Publikationsdatum:
26. September 2017 (online)

Abstract

Obsessive-compulsive disorder (OCD) is a chronic psychiatric illness and 1 of the most common anxiety disorders with the prevalence of 3%. Although its pathogenesis remains unclear, the traditional model focused on alternations in the serotonin system. Selective serotonin reuptake inhibitors provide the most effective treatment; however, as much as 40–60% of patients do not respond to antidepressants therapy. Thus, attention has shifted towards other neurotransmitter systems and related neuroanatomical structures. Recently, there is extensive evidence showing a key role of glutamate pathways abnormalities within the cortico-striatal-thalamo-cortical circuitry and temporal lobes in OCD pathogenesis. In this review, we link together the existent neuroanatomical, neurophysiological, and neuropsychological evidence to argue for potential benefits of adjuvant treatment with glutamatergic agents, especially memantine. By a targeted de-excitation effect on the glutamatergic system in the temporal lobes and connected brain regions, memantine might further alleviate OCD symptoms. This effect should be even more pronounced in certain subtypes of patients with specific cognitive deficits and maladaptive compensatory memory processes (e.g., checkers).

 
  • References

  • 1 Bloch MH, Pittenger C. The genetics of obsessive-compulsive disorder. Curr Psychiatry Rev 2010; 6: 91-103
  • 2 Veale D, Roberts A. Obsessive-compulsive disorder. BMJ 2014; 348: g2183
  • 3 Olesen J, Gustavsson A, Svensson M. et al. The economic cost of brain disorders in Europe. Eur J Neurol 2012; 19: 155-162
  • 4 DuPont RL, Rice DP, Shiraki S. et al. Economic costs of obsessive-compulsive disorder. Med Interface 1995; 8: 102-109
  • 5 Skapinakis P, Caldwell D, Hollingworth W. et al. A systematic review of the clinical effectiveness and cost-effectiveness of pharmacological and psychological interventions for the management of obsessive-compulsive disorder in children/adolescents and adults. Health Technol Assess 2016; 20: 1-392
  • 6 Pittenger C, Bloch MH. Pharmacological treatment of obsessive-compulsive disorder. Psychiatr Clin North Am 2014; 37: 375-391
  • 7 Pallanti S, Hollander E, Bienstock C. et al. Treatment non-response in OCD: methodological issues and operational definitions. Int J Neuropsychopharmacol 2002; 5: 181-191
  • 8 Veale D, Miles S, Smallcombe N. et al. Atypical antipsychotic augmentation in SSRI treatment refractory obsessive-compulsive disorder: A systematic review and meta-analysis. BMC Psychiatry 2014; 14: 317
  • 9 Denys D, de Geus F, van Megen HJ. et al. A double-blind, randomized, placebo-controlled trial of quetiapine addition in patients with obsessive-compulsive disorder refractory to serotonin reuptake inhibitors. J Clin Psychiatry 2004; 65: 1040-1048
  • 10 Abudy A, Juven-Wetzler A, Zohar J. Pharmacological management of treatment-resistant obsessive-compulsive disorder. CNS Drugs 2011; 25: 585-596
  • 11 Karch S, Pogarell O. Neurobiology of obsessive-compulsive disorder. Nervenarzt 2011; 82: 299-307
  • 12 Abramovitch A, Mittelman A, Tankersley AP. et al. Neuropsychological investigations in obsessive-compulsive disorder: A systematic review of methodological challenges. Psychiatry Res 2015; 228: 112-120
  • 13 Nakao T, Okada K, Kanba S. Neurobiological model of obsessive-compulsive disorder: evidence from recent neuropsychological and neuroimaging findings. Psychiatry Clin Neurosci 2014; 68: 587-605
  • 14 Clark CR, Galletly CA, Ash DJ. et al. Evidence-based medicine evaluation of electrophysiological studies of the anxiety disorders. Clin EEG Neurosci 2009; 40: 84-112
  • 15 Aouizerate B, Guehl D, Cuny E. et al. Updated overview of the putative role of the serotoninergic system in obsessive-compulsive disorder. Neuropsychiatr Dis Treat 2005; 1: 231-243
  • 16 Goodman WK, Grice DE, Lapidus KA. et al. Obsessive-compulsive disorder. Psychiatr Clin North Am 2014; 37: 257-267
  • 17 Prichep LS, Mas F, Hollander E. et al. Quantitative electroencephalographic subtyping of obsessive-compulsive disorder. Psychiatry Res 1993; 50: 25-32
  • 18 Saxena S, Rauch SL. Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder. Psychiatr Clin North Am 2000; 23: 563-586
  • 19 Pauls DL, Abramovitch A, Rauch SL. et al. Obsessive-compulsive disorder: an integrative genetic and neurobiological perspective. Nat Rev Neurosci 2014; 15: 410-424
  • 20 Singer HS, Morris C, Grados M. Glutamatergic modulatory therapy for Tourette syndrome. Med Hypotheses 2010; 74: 862-867
  • 21 Rosenberg DR, Keshavan MS. A.E. Bennett Research Award. Toward a neurodevelopmental model of obsessive–compulsive disorder. Biol Psychiatry 1998; 43: 623-640
  • 22 Grados MA, Specht MW, Sung HM. et al. Glutamate drugs and pharmacogenetics of OCD: a pathway-based exploratory approach. Expert Opin Drug Discov 2013; 8: 1515-1527
  • 23 Garcia-Munoz M, Lopez-Huerta VG, Carrillo-Reid L. et al. Extrasynaptic glutamate NMDA receptors: key players in striatal function. Neuropharmacology 2015; 89: 54-63
  • 24 Sampaio AS, Fagerness J, Crane J. et al. Association between polymorphisms in GRIK2 gene and obsessive-compulsive disorder: a family-based study. CNS Neurosci Ther 2011; 17: 141-147
  • 25 Rotge JY, Aouizerate B, Tignol J. et al. The glutamate-based genetic immune hypothesis in obsessive-compulsive disorder. An integrative approach from genes to symptoms. Neuroscience 2010; 165: 408-417
  • 26 Arnold PD, Sicard T, Burroughs E. et al. Glutamate transporter gene SLC1A1 associated with obsessive-compulsive disorder. Arch Gen Psychiatry 2006; 63: 769-776
  • 27 Mintzopoulos D, Gillis TE, Robertson HR. et al. Striatal magnetic resonance spectroscopy abnormalities in young adult SAPAP3 knockout mice. Biol Psychiatry Cogn Neurosci Neuroimaging 2016; 1: 39-48
  • 28 Bozkurt A, Zilles K, Schleicher A. et al. Distributions of transmitter receptors in the macaque cingulate cortex. Neuroimage 2005; 25: 219-229
  • 29 Naaijen J, Lythgoe DJ, Amiri H. et al. Fronto-striatal glutamatergic compounds in compulsive and impulsive syndromes: a review of magnetic resonance spectroscopy studies. Neurosci Biobehav Rev 2015; 52: 74-88
  • 30 Wu K, Hanna GL, Rosenberg DR. et al. The role of glutamate signaling in the pathogenesis and treatment of obsessive-compulsive disorder. Pharmacol Biochem Behav 2012; 100: 726-735
  • 31 MacMaster FP. Translational neuroimaging research in pediatric obsessive-compulsive disorder. Dialogues Clin Neurosci 2010; 12: 165-174
  • 32 Rosenberg DR, MacMaster FP, Keshavan MS. et al. Decrease in caudate glutamatergic concentrations in pediatric obsessive-compulsive disorder patients taking paroxetine. J Am Acad Child Adolesc Psychiatry 2000; 39: 1096-1103
  • 33 Rosenberg DR, Mirza Y, Russell A. et al. Reduced anterior cingulate glutamatergic concentrations in childhood OCD and major depression versus healthy controls. J Am Acad Child Adolesc Psychiatry 2004; 43: 1146-1153
  • 34 Yucel M, Wood SJ, Wellard RM. et al. Anterior cingulate glutamate-glutamine levels predict symptom severity in women with obsessive-compulsive disorder. Aust N Z J Psychiatry 2008; 42: 467-477
  • 35 El Mansari M, Blier P. Mechanisms of action of current and potential pharmacotherapies of obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30: 362-373
  • 36 Ortiz AE, Gasso P, Mas S. et al. Association between genetic variants of serotonergic and glutamatergic pathways and the concentration of neurometabolites of the anterior cingulate cortex in paediatric patients with obsessive-compulsive disorder. World J Biol Psychiatry 2016; 17: 394-404
  • 37 Simpson HB, Kegeles LS, Hunter L. et al. Assessment of glutamate in striatal subregions in obsessive-compulsive disorder with proton magnetic resonance spectroscopy. Psychiatry Res 2015; 232: 65-70
  • 38 Pujol J, Soriano-Mas C, Alonso P. et al. Mapping structural brain alterations in obsessive-compulsive disorder. Arch Gen Psychiatry 2004; 61: 720-730
  • 39 Subira M, Alonso P, Segalas C. et al. Brain structural alterations in obsessive-compulsive disorder patients with autogenous and reactive obsessions. PLoS One 2013; 8: e75273
  • 40 Rauch SL, Wedig MM, Wright CI. et al. Functional magnetic resonance imaging study of regional brain activation during implicit sequence learning in obsessive-compulsive disorder. Biol Psychiatry 2007; 61: 330-336
  • 41 Hendler T, Goshen E, Tadmor R. et al. Evidence for striatal modulation in the presence of fixed cortical injury in obsessive-compulsive disorder (OCD). Eur Neuropsychopharmacol 1999; 9: 371-376
  • 42 den Braber A, van’t Ent D, Cath D. et al. A DTI study of monozygotic twins discordant for obsessive-compulsive symptoms. Neuroimage 2009; 47: S127
  • 43 Yoo S, Jang J, Shin YW. et al. White matter abnormalities in drug-naïve patients with obsessive–compulsive disorder: A diffusion tensor Study before and after citalopram treatment. Acta Psychiatrica Scandinavica 2007; 116: 211-219
  • 44 Yeterian EH, Pandya DN. Corticostriatal connections of the superior temporal region in rhesus monkeys. J Comp Neurol 1998; 399: 384-402
  • 45 Qian S, Sun G, Jiang Q. et al. Altered topological patterns of large-scale brain functional networks during passive hyperthermia. Brain Cogn 2013; 83: 121-131
  • 46 Li F, Huang X, Yang Y. et al. Microstructural brain abnormalities in patients with obsessive-compulsive disorder: Diffusion-tensor MR imaging study at 3.0 T. Radiology 2011; 260: 216-223
  • 47 den Braber A, de Geus EJ, Boomsma DI. et al. Obsessive-compulsive symptoms and related sex differences in brain structure: An MRI study in Dutch twins. Twin Res Hum Genet 2013; 16: 516-524
  • 48 Choi JS, Kim HS, Yoo SY. et al. Morphometric alterations of anterior superior temporal cortex in obsessive-compulsive disorder. Depress Anxiety 2006; 23: 290-296
  • 49 Maihofner C, Sperling W, Kaltenhauser M. et al. Spontaneous magnetoencephalographic activity in patients with obsessive-compulsive disorder. Brain Res 2007; 1129: 200-205
  • 50 Van Laere K, Nuttin B, Gabriels L. et al. Metabolic imaging of anterior capsular stimulation in refractory obsessive-compulsive disorder: A key role for the subgenual anterior cingulate and ventral striatum. J Nucl Med 2006; 47: 740-747
  • 51 Zhang A, Leow A, Ajilore O. et al. Quantitative tract-specific measures of uncinate and cingulum in major depression using diffusion tensor imaging. Neuropsychopharmacology 2012; 37: 959-967
  • 52 Atmaca M. Review of structural neuroimaging in patients with refractory obsessive-compulsive disorder. Neurosci Bull 2011; 27: 215-220
  • 53 Inoue T, Kitaichi Y, Koyama T. SSRIs and conditioned fear. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35: 1810-1819
  • 54 Reess TJ, Rus OG, Schmidt R. et al. Connectomics-based structural network alterations in obsessive-compulsive disorder. Transl Psychiatry 2016; 6: e882
  • 55 Isaacs KL, Philbeck JW, Barr WB. et al. Obsessive-compulsive symptoms in patients with temporal lobe epilepsy. Epilepsy Behav 2004; 5: 569-574
  • 56 Monaco F, Cavanna A, Magli E. et al. Obsessionality, obsessive-compulsive disorder, and temporal lobe epilepsy. Epilepsy Behav 2005; 7: 491-496
  • 57 Barbieri V, Lo Russo G, Francione S. et al. Association of temporal lobe epilepsy and obsessive-compulsive disorder in a patient successfully treated with right temporal lobectomy. Epilepsy Behav 2005; 6: 617-619
  • 58 Kaplan PW. Epilepsy and obsessive-compulsive disorder. Dialogues Clin Neurosci 2010; 12: 241-248
  • 59 Hansen ES, Prichep LS, Bolwig TG. et al. Quantitative electroencephalography in OCD patients treated with paroxetine. Clin Electroencephalogr 2003; 34: 70-74
  • 60 Locatelli M, Bellodi L, Grassi B. et al. EEG power modifications in obsessive-compulsive disorder during olfactory stimulation. Biol Psychiatry 1996; 39: 326-331
  • 61 Rauch SL, Savage CR, Alpert NM. et al. Probing striatal function in obsessive-compulsive disorder: A PET study of implicit sequence learning. J Neuropsychiatry Clin Neurosci 1997; 9: 568-573
  • 62 Rauch SL, Whalen PJ, Curran T. et al. Probing striato-thalamic function in obsessive-compulsive disorder and Tourette syndrome using neuroimaging methods. Adv Neurol 2001; 85: 207-224
  • 63 Joel D, Zohar O, Afek M. et al. Impaired procedural learning in obsessive-compulsive disorder and Parkinson’s disease, but not in major depressive disorder. Behav Brain Res 2005; 157: 253-263
  • 64 Ullman MT, Pullman MY. A compensatory role for declarative memory in neurodevelopmental disorders. Neurosci Biobehav Rev 2015; 51: 205-222
  • 65 Peterson BS, Choi HA, Hao X. et al. Morphologic features of the amygdala and hippocampus in children and adults with Tourette syndrome. Arch Gen Psychiatry 2007; 64: 1281-1291
  • 66 Rauch SL, Britton JC. Developmental neuroimaging studies of OCD: the maturation of a field. J Am Acad Child Adolesc Psychiatry 2010; 49: 1186-1188
  • 67 DeCoteau WE, Kesner RP. A double dissociation between the rat hippocampus and medial caudoputamen in processing two forms of knowledge. Behav Neurosci 2000; 114: 1096-1108
  • 68 Rachman S. A cognitive theory of compulsive checking. Behav Res Ther 2002; 40: 625-639
  • 69 van den Hout M, Kindt M. Phenomenological validity of an OCD-memory model and the remember/know distinction. Behav Res Ther 2003; 41: 369-378
  • 70 van den Hout M, Kindt M. Repeated checking causes memory distrust. Behav Res Ther 2003; 41: 301-316
  • 71 van den Hout M, Kindt M. Obsessive-compulsive disorder and the paradoxical effects of perseverative behaviour on experienced uncertainty. J Behav Ther Exp Psychiatry 2004; 35: 165-181
  • 72 Tallis F, Pratt P, Jamani N. Obsessive compulsive disorder, checking, and non-verbal memory: A neuropsychological investigation. Behav Res Ther 1999; 37: 161-166
  • 73 Omori IM, Murata Y, Yamanishi T. et al. The differential impact of executive attention dysfunction on episodic memory in obsessive-compulsive disorder patients with checking symptoms vs. those with washing symptoms. J Psychiatr Res 2007; 41: 776-784
  • 74 Kyrios M, Wainwright K, Purcell R et al. Neuropsychological performance in subtypes of obsessive–compulsive disorder. Paper presented at the 33rd conference of the Association for Advancement of Behavior Therapy 1999
  • 75 Mataix-Cols D, Junque C, Sanchez-Turet M. et al. Neuropsychological functioning in a subclinical obsessive-compulsive sample. Biol Psychiatry 1999; 45: 898-904
  • 76 Nedeljkovic M, Kyrios M, Moulding R. et al. Differences in neuropsychological performance between subtypes of obsessive–compulsive disorder. Aust N Z J Psychiatry 2009; 43: 216-226
  • 77 Ahmari SE, Eich T, Cebenoyan D. et al. Assessing neurocognitive function in psychiatric disorders: A roadmap for enhancing consensus. Neurobiol Learn Mem 2014; 115: 10-20
  • 78 Radua J, Mataix-Cols D. Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. Br J Psychiatry 2009; 195: 393-402
  • 79 van den Heuvel OA, Remijnse PL, Mataix-Cols D. et al. The major symptom dimensions of obsessive-compulsive disorder are mediated by partially distinct neural systems. Brain 2009; 132: 853-868
  • 80 Via E, Cardoner N, Pujol J. et al. Amygdala activation and symptom dimensions in obsessive-compulsive disorder. Br J Psychiatry 2014; 204: 61-68
  • 81 Alvarenga PG, do Rosário MC, Batistuzzo MC. et al. Obsessive-compulsive symptom dimensions correlate to specific gray matter volumes in treatment-naïve patients. J Psychiatr Res 2012; 46: 1635-1642
  • 82 Valente Jr. AA, Miguel EC, Castro CC. et al. Regional gray matter abnormalities in obsessive-compulsive disorder: A voxel-based morphometry study. Biol Psychiatry 2005; 58: 479-487
  • 83 Lee HJ, Kwon SM, Kwon JS. et al. Testing the autogenous-reactive model of obsessions. Depress Anxiety 2005; 21: 118-129
  • 84 Besiroglu L, Sozen M, Ozbebit O. et al. The involvement of distinct neural systems in patients with obsessive-compulsive disorder with autogenous and reactive obsessions. Acta Psychiatr Scand 2011; 124: 141-151
  • 85 Alonso P, Orbegozo A, Pujol J. et al. Neural correlates of obsessive-compulsive related dysfunctional beliefs. Prog Neuropsychopharmacol Biol Psychiatry 2013; 47: 25-32
  • 86 Pittenger C. Glutamate modulators in the treatment of obsessive-compulsive disorder. Psychiatr Ann 2015; 45: 308-315
  • 87 Kariuki-Nyuthe C, Gomez-Mancilla B, Stein DJ. Obsessive compulsive disorder and the glutamatergic system. Curr Opin Psychiatry 2014; 27: 32-37
  • 88 Pittenger C. Glutamatergic agents for OCD and related disorders. Curr Treat Options Psychiatry 2015; 2: 271-283
  • 89 Kretschmer BD, Kratzer U, Schmidt WJ. Riluzole, a glutamate release inhibitor, and motor behavior. Naunyn Schmiedebergs Arch Pharmacol 1998; 358: 181-190
  • 90 Pittenger C, Bloch MH, Wasylink S. et al. Riluzole augmentation in treatment-refractory obsessive-compulsive disorder: A pilot randomized placebo-controlled trial. J Clin Psychiatry 2015; 76: 1075-1084
  • 91 Aida T, Yoshida J, Nomura M. et al. Astroglial glutamate transporter deficiency increases synaptic excitability and leads to pathological repetitive behaviors in mice. Neuropsychopharmacology 2015; 40: 1569-1579
  • 92 Porton B, Greenberg BD, Askland K. et al. Isoforms of the neuronal glutamate transporter gene, SLC1A1/EAAC1, negatively modulate glutamate uptake: relevance to obsessive-compulsive disorder. Transl Psychiatry 2013; 3: e259
  • 93 Veenstra-VanderWeele J, Xu T, Ruggiero AM. et al. Functional studies and rare variant screening of SLC1A1/EAAC1 in males with obsessive-compulsive disorder. Psychiatr Genet 2012; 22: 256-260
  • 94 Gerhard DM, Wohleb ES, Duman RS. Emerging treatment mechanisms for depression: focus on glutamate and synaptic plasticity. Drug Discov Today 2016; 21: 454-464
  • 95 Kaster MP, Moretti M, Cunha MP. et al. Novel approaches for the management of depressive disorders. Eur J Pharmacol 2016; 771: 236-240
  • 96 Rodriguez CI, Kegeles LS, Flood P. et al. Rapid resolution of obsessions after an infusion of intravenous ketamine in a patient with treatment-resistant obsessive-compulsive disorder. J Clin Psychiatry 2011; 72: 567-569
  • 97 Rodriguez CI, Kegeles LS, Levinson A. et al. Randomized controlled crossover trial of ketamine in obsessive-compulsive disorder: proof-of-concept. Neuropsychopharmacology 2013; 38: 2475-2483
  • 98 Rodriguez CI, Levinson A, Zwerling J. et al. Open-Label trial on the effects of memantine in adults with obsessive-compulsive disorder after a single ketamine infusion. J Clin Psychiatry 2016; 77: 688-689
  • 99 Bloch MH, Wasylink S, Landeros-Weisenberger A. et al. Effects of ketamine in treatment-refractory obsessive-compulsive disorder. Biol Psychiatry 2012; 72: 964-970
  • 100 Hollander E, Dell’Osso B. Topiramate plus paroxetine in treatment-resistant obsessive-compulsive disorder. Int Clin Psychopharmacol 2006; 21: 189-191
  • 101 Berlin HA, Koran LM, Jenike MA. et al. Double-blind, placebo-controlled trial of topiramate augmentation in treatment-resistant obsessive-compulsive disorder. J Clin Psychiatry 2011; 72: 716-721
  • 102 Hussain A, Dar MA, Wani RA. et al. Role of lamotrigine augmentation in treatment-resistant obsessive compulsive disorder: A retrospective case review from South Asia. Indian J Psychol Med 2015; 37: 154-158
  • 103 Arrojo-Romero M, Tajes Alonso M, de Leon J. Lamotrigine augmentation of serotonin reuptake inhibitors in severe and long-term treatment-resistant obsessive-compulsive disorder. Case Rep Psychiatry 2013; 2013: 612459
  • 104 Uzun O. Lamotrigine as an augmentation agent in treatment-resistant obsessive-compulsive disorder: A case report. J Psychopharmacol 2010; 24: 425-427
  • 105 Bruno A, Mico U, Pandolfo G. et al. Lamotrigine augmentation of serotonin reuptake inhibitors in treatment-resistant obsessive-compulsive disorder: A double-blind, placebo-controlled study. J Psychopharmacol 2012; 26: 1456-1462
  • 106 Sitges M, Chiu LM, Guarneros A. et al. Effects of carbamazepine, phenytoin, lamotrigine, oxcarbazepine, topiramate and vinpocetine on Na+ channel-mediated release of [3H]glutamate in hippocampal nerve endings. Neuropharmacology 2007; 52: 598-605
  • 107 Waldmeier PC, Martin P, Stocklin K. et al. Effect of carbamazepine, oxcarbazepine and lamotrigine on the increase in extracellular glutamate elicited by veratridine in rat cortex and striatum. Naunyn Schmiedebergs Arch Pharmacol 1996; 354: 164-172
  • 108 Wang SJ, Sihra TS, Gean PW. Lamotrigine inhibition of glutamate release from isolated cerebrocortical nerve terminals (synaptosomes) by suppression of voltage-activated calcium channel activity. Neuroreport 2001; 12: 2255-2258
  • 109 Cunningham MO, Jones RS. The anticonvulsant, lamotrigine decreases spontaneous glutamate release but increases spontaneous GABA release in the rat entorhinal cortex in vitro. Neuropharmacology 2000; 39: 2139-2146
  • 110 Brennan BP, Jensen JE, Perriello C. et al. Lower posterior cingulate cortex glutathione levels in obsessive-compulsive disorder. Biol Psychiatry Cogn Neurosci Neuroimaging 2016; 1: 116-124
  • 111 Simsek S, Gencoglan S, Yuksel T. DNA damage and antioxidants in treatment naive children with obsessive-compulsive disorder. Psychiatry Res 2016; 237: 133-137
  • 112 Dean O, Giorlando F, Berk M. N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. J Psychiatry Neurosci 2011; 36: 78-86
  • 113 Oliver G, Dean O, Camfield D. et al. N-acetyl cysteine in the treatment of obsessive compulsive and related disorders: A systematic review. Clin Psychopharmacol Neurosci 2015; 13: 12-24
  • 114 Corbit LH, Chieng BC, Balleine BW. Effects of repeated cocaine exposure on habit learning and reversal by N-acetylcysteine. Neuropsychopharmacology 2014; 39: 1893-1901
  • 115 Kupchik YM, Moussawi K, Tang XC. et al. The effect of N-acetylcysteine in the nucleus accumbens on neurotransmission and relapse to cocaine. Biol Psychiatry 2012; 71: 978-986
  • 116 Minarini A, Ferrari S, Galletti M. et al. N-acetylcysteine in the treatment of psychiatric disorders: current status and future prospects. Expert Opin Drug Metab Toxicol 2017; 13: 279-292
  • 117 Norberg MM, Krystal JH, Tolin DF. A meta-analysis of D-cycloserine and the facilitation of fear extinction and exposure therapy. Biol Psychiatry 2008; 63: 1118-1126
  • 118 Hofmann SG, Otto MW, Pollack MH. et al. D-cycloserine augmentation of cognitive behavioral therapy for anxiety disorders: An update. Curr Psychiatry Rep 2015; 17: 532
  • 119 Goff DC. D-cycloserine in schizophrenia: new strategies for improving clinical outcomes by enhancing plasticity. Curr Neuropharmacol 2017; 15: 21-34
  • 120 Storch EA, Wilhelm S, Sprich S. et al. Efficacy of augmentation of cognitive behavior therapy with weight-adjusted d-cycloserine vs placebo in pediatric obsessive-compulsive disorder: A randomized clinical trial. JAMA Psychiatry 2016; 73: 779-788
  • 121 Wilhelm S, Buhlmann U, Tolin DF. et al. Augmentation of behavior therapy with D-cycloserine for obsessive-compulsive disorder. Am J Psychiatry 2008; 165: 335-341
  • 122 Chasson GS, Buhlmann U, Tolin DF. et al. Need for speed: evaluating slopes of OCD recovery in behavior therapy enhanced with d-cycloserine. Behav Res Ther 2010; 48: 675-679
  • 123 Kushner MG, Kim SW, Donahue C. et al. D-cycloserine augmented exposure therapy for obsessive-compulsive disorder. Biol Psychiatry 2007; 62: 835-838
  • 124 Andersson E, Hedman E, Enander J. et al. D-cycloserine vs placebo as adjunct to cognitive behavioral therapy for obsessive-compulsive disorder and interaction with antidepressants: A randomized clinical trial. JAMA Psychiatry 2015; 72: 659-667
  • 125 de Leeuw AS, van Megen HJ, Kahn RS. et al. D-cycloserine addition to exposure sessions in the treatment of patients with obsessive-compulsive disorder. Eur Psychiatry 2017; 40: 38-44
  • 126 Greenberg WM, Benedict MM, Doerfer J. et al. Adjunctive glycine in the treatment of obsessive-compulsive disorder in adults. J Psychiatr Res 2009; 43: 664-670
  • 127 Bugarski-Kirola D, Wang A, Abi-Saab D. et al. A phase II/III trial of bitopertin monotherapy compared with placebo in patients with an acute exacerbation of schizophrenia–results from the CandleLyte study. European Neuropsychopharmacology 2014; 24: 1024-1036
  • 128 Rodriguez CI, Zwerling J, Kalanthroff E. et al. Effect of a novel NMDA receptor modulator, rapastinel (formerly GLYX-13), in OCD: proof of concept. Am J Psychiatry 2016; 173: 1239-1241
  • 129 Javelot H. Psychopharmacology of anxiety and depression: historical aspects, current treatments and perspectives. Ann Pharm Fr 2016; 74: 93-118
  • 130 Hezel DM, Beattie K, Stewart SE. Memantine as an augmenting agent for severe pediatric OCD. Am J Psychiatry 2009; 166: 237
  • 131 Stewart SE, Jenike EA, Hezel DM. et al. A single-blinded case-control study of memantine in severe obsessive-compulsive disorder. J Clin Psychopharmacol 2010; 30: 34-39
  • 132 Haghighi M, Jahangard L, Mohammad-Beigi H. et al. In a double-blind, randomized and placebo-controlled trial, adjuvant memantine improved symptoms in inpatients suffering from refractory obsessive-compulsive disorders (OCD). Psychopharmacology (Berl) 2013; 228: 633-640
  • 133 Ghaleiha A, Entezari N, Modabbernia A. et al. Memantine add-on in moderate to severe obsessive-compulsive disorder: randomized double-blind placebo-controlled study. J Psychiatr Res 2013; 47: 175-180
  • 134 Saxena S, Bota RG, Brody AL. Brain-behavior relationships in obsessive-compulsive disorder. Semin Clin Neuropsychiatry 2001; 6: 82-101
  • 135 Schipke CG, Heuser I, Peters O. Antidepressants act on glial cells: SSRIs and serotonin elicit astrocyte calcium signaling in the mouse prefrontal cortex. J Psychiatr Res 2011; 45: 242-248
  • 136 Golembiowska K, Dziubina A. Effect of acute and chronic administration of citalopram on glutamate and aspartate release in the rat prefrontal cortex. Pol J Pharmacol 2000; 52: 441-448
  • 137 McEwen BS, Chattarji S. Molecular mechanisms of neuroplasticity and pharmacological implications: the example of tianeptine. Eur Neuropsychopharmacol 2004; 14 (Suppl. 05) S497-S502
  • 138 Sekar S, Jonckers E, Verhoye M. et al. Subchronic memantine induced concurrent functional disconnectivity and altered ultra-structural tissue integrity in the rodent brain: revealed by multimodal MRI. Psychopharmacology (Berl) 2013; 227: 479-491
  • 139 Kim YW, Shin JC, An YS. Changes in cerebral glucose metabolism in patients with posttraumatic cognitive impairment after memantine therapy: A preliminary study. Ann Nucl Med 2010; 24: 363-369
  • 140 Mares P, Mikulecka A. Different effects of two N-methyl-D-aspartate receptor antagonists on seizures, spontaneous behavior, and motor performance in immature rats. Epilepsy Behav 2009; 14: 32-39
  • 141 Kohl BK, Dannhardt G. The NMDA receptor complex: A promising target for novel antiepileptic strategies. Curr Med Chem. 2001; 8: 1275-1289
  • 142 Jia LJ, Wang WP, Li ZP. et al. Memantine attenuates the impairment of spatial learning and memory of pentylenetetrazol-kindled rats. Neurol Sci 2011; 32: 609-613
  • 143 Marimuthu P, Varadarajan S, Krishnan M. et al. Evaluating the efficacy of memantine on improving cognitive functions in epileptic patients receiving anti-epileptic drugs: A double-blind placebo-controlled clinical trial (Phase IIIb pilot study). Ann Indian Acad Neurol 2016; 19: 344-350
  • 144 Zaitsev AV, Kim K, Vasilev DS. et al. N-methyl-D-aspartate receptor channel blockers prevent pentylenetetrazole-induced convulsions and morphological changes in rat brain neurons. J Neurosci Res 2015; 93: 454-465
  • 145 Reniers RL, Vollm BA, Elliott R. et al. Empathy, ToM, and self-other differentiation: An fMRI study of internal states. Soc Neurosci 2014; 9: 50-62
  • 146 Busigny T, Robaye L, Dricot L. et al. Right anterior temporal lobe atrophy and person-based semantic defect: A detailed case study. Neurocase 2009; 15: 485-508
  • 147 Helmstaedter C, Richter S, Röske S. et al. Differential effects of temporal pole resection with amygdalohippocampectomy versus selective amygdalohippocampectomy on material-specific memory in patients with mesial temporal lobe epilepsy. Epilepsia 2008; 49: 88-97
  • 148 Skirrow C, Cross JH, Harrison S. et al. Temporal lobe surgery in childhood and neuroanatomical predictors of long-term declarative memory outcome. Brain 2015; 138: 80-93
  • 149 Olson IR, Plotzker A, Ezzyat Y. The enigmatic temporal pole: A review of findings on social and emotional processing. Brain 2007; 130: 1718-1731
  • 150 Pasquini M, Biondi M. Memantine augmentation for refractory obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30: 1173-1175
  • 151 Poyurovsky M, Weizman R, Weizman A. et al. Memantine for treatment-resistant OCD. Am J Psychiatry 2005; 162: 2191-2192
  • 152 Amaral D, Witter M, Paxinos G. The Rat Nervous System. San Diego: Academic Press; 1995: 443-485
  • 153 McDonald AJ, Mott DD. Functional neuroanatomy of amygdalohippocampal interconnections and their role in learning and memory. J Neurosci Res 2017; 95: 797-820
  • 154 Storch EA, Merlo LJ, Bengtson M. et al. D-cycloserine does not enhance exposure-response prevention therapy in obsessive-compulsive disorder. Int Clin Psychopharmacol 2007; 22: 230-237
  • 155 Storch EA, Murphy TK, Goodman WK. et al. A preliminary study of D-cycloserine augmentation of cognitive-behavioral therapy in pediatric obsessive-compulsive disorder. Biol Psychiatry 2010; 68: 1073-1076
  • 156 Park JM, Small BJ, Geller DA. et al. Does d-cycloserine augmentation of CBT improve therapeutic homework compliance for pediatric obsessive-compulsive disorder?. J Child Fam Stud 2014; 23: 863-871
  • 157 Olatunji BO, Rosenfield D, Monzani B. et al. Effects of homework compliance on cognitive-behavioral therapy with d-cycloserine augmentation for children with obsessive compulsive disorder. Depress Anxiety 2015; 32: 935-943
  • 158 Afshar H, Roohafza H, Mohammad-Beigi H. et al. N-acetylcysteine add-on treatment in refractory obsessive-compulsive disorder: A randomized, double-blind, placebo-controlled trial. J Clin Psychopharmacol 2012; 32: 797-803
  • 159 Sarris J, Oliver G, Camfield DA. et al. N-acetyl cysteine (NAC) in the treatment of obsessive-compulsive disorder: A 16-week, double-blind, randomised, placebo-controlled study. CNS Drugs 2015; 29: 801-809
  • 160 Paydary K, Akamaloo A, Ahmadipour A. et al. N-acetylcysteine augmentation therapy for moderate-to-severe obsessive-compulsive disorder: randomized, double-blind, placebo-controlled trial. J Clin Pharm Ther 2016; 41: 214-219
  • 161 Costa DLC, Diniz JB, Requena G et al. Randomized, double-blind, placebo-controlled trial of N-acetylcysteine augmentation for treatment-resistant obsessive-compulsive disorder. J Clin Psychiatry 2017 [Epub ahead of print]
  • 162 Ghanizadeh A, Mohammadi MR. Bahraini S, et al. Efficacy of N-acetylcysteine augmentation on obsessive compulsive disorder: A multicenter randomized double blind placebo controlled clinical trial. Iran J Psychiatry 2017; 12: 134-141
  • 163 Grant PJ, Joseph LA, Farmer CA. et al. 12-week, placebo-controlled trial of add-on riluzole in the treatment of childhood-onset obsessive-compulsive disorder. Neuropsychopharmacology 2014; 39: 1453-1459
  • 164 Mowla A, Khajeian AM, Sahraian A. et al. Topiramate augmentation in resistant OCD: A double-blind placebo-controlled clinical trial. CNS Spectr 2010; 15: 613-617
  • 165 Afshar H, Akuchekian S, Mahaky B. et al. Topiramate augmentation in refractory obsessive-compulsive disorder: A randomized, double-blind, placebo-controlled trial. J Res Med Sci 2014; 19: 976-981