Radiologie up2date 2017; 17(04): 307-320
DOI: 10.1055/s-0043-119184
Pulmonale und kardiovaskuläre Radiologie
Georg Thieme Verlag KG Stuttgart · New York

Neue Möglichkeiten der Ischämiediagnostik: CT-FFR und CT-Perfusion

New possibilities in the diagnosis of ischemia: CT-FFR and CT-Perfusion
Lukas Lehmkuhl
,
Christian Krieghoff
,
Matthias Gutberlet
Further Information

Publication History

Publication Date:
19 December 2017 (online)

Zusammenfassung

Die koronare CT-Angiografie hat in den Leitlinien und in der Klinik einen immer höheren Stellenwert in der Primärdiagnostik der koronaren Herzkrankheit – mit einer hohen Sensitivität und einem hohen negativen prädiktiven Wert. Die Spezifität der Methode kann jedoch noch besser werden – z. B. mit neuen Methoden der Ischämiediagnostik wie der CT-FFR und der CT-Perfusion.

Abstract

Coronary CT-angiography (CCTA) plays an increasing role in the primary diagnostics of coronary artery disease (CAD) according to the present guidelines but also in clinical reality. The sensitivity and negative predictive value of CCTA is very high, but the specificity could still be improved. Newer techniques to assess myocardial ischemia like CT-FFR and CT-Perfusion may help to achieve that goal.

Kernaussagen
  • Sensitivität und Spezifität verschiedener bildgebender Verfahren in der Primärdiagnostik der KHK sind sehr unterschiedlich. Ihre Aussagekraft ist bei intermediärer Vortestwahrscheinlichkeit am größten.

  • Die koronare CT-Angiografie (CCTA) hat eine hohe Sensitivität bei relativ niedriger Spezifität. Mithilfe der CT-FFR oder der Ischämiediagnostik als ergänzendem Verfahren kann diese niedrige Spezifität erhöht werden. Die CCTA wird vor allem für Patienten mit niedriger mittlerer Vortestwahrscheinlichkeit (15 – 50%) empfohlen.

  • Bei der CT-Ischämiediagnostik wird eine pharmakologische Belastung durchgeführt, wobei die Belastung mit Regadenoson für den Einsatz in der CT-Perfusion besonders geeignet ist. Die Bildakquisition ist dynamisch während der Kontrastmittelpassage mittels wiederholter Aufnahmen möglich oder statisch jeweils zum Zeitpunkt des Peak Enhancements.

 
  • Literatur

  • 1 Achenbach S, Barkhausen J, Beer M. et al. Konsensusempfehlungen der DRG/DGK/DGPK zum Einsatz der Herzbildgebung mit Computertomografie und Magnetresonanztomografie. RöFo 2012; 184: 345-368
  • 2 Task Force Members. Montalescot G, Sechtem U, Achenbach S. et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 2013; 34: 2949-3003
  • 3 Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV), Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Nationale VersorgungsLeitlinie Chronische KHK – Langfassung, 4. Auflage. Version 1. 2016; DOI: 10.6101/AZQ/000267. Im Internet: http://www.khk.versorgungsleitlinien.de Stand: 12.09.2017
  • 4 Schuhbäck A, Kolwelter J, Achenbach S. Diamond-Forrester and cardiac CT: Is there a need to redefine the pretest probability of coronary artery disease?. Herz 2016; 41: 371-375 doi:10.1007/s00059-016-4437-1
  • 5 Athanasiadis A, Sechtem U. Diagnostik und Therapie der chronisch stabilen koronaren Herzkrankheit – Neue Empfehlungen der Europäischen Gesellschaft für Kardiologie. Herz 2014; 39: 902-912
  • 6 Kardiales MR/CT-Registry der European Society of Cardiovascular Radiology (ESCR). Im Internet: http://www.mrct-registry.org/ Stand: 13.11.2017
  • 7 Taylor AJ, Cerqueira M, Hodgson JM. et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 Appropriate Use Criteria for Cardiac Computed Tomography. J Am Coll Cardiol 2010; 56: 1864-1894
  • 8 Budoff MJ, Dowe D, Jollis JG. et al. Diagnostic performance of 64-Multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease. J Am Coll Cardiol 2008; 52: 1724-1732
  • 9 Meijboom WB, Meijs MFL, Schuijf JD. et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography. J Am Coll Cardiol 2008; 52: 2135-2144
  • 10 Hulten EA, Carbonaro S, Petrillo SP. et al. Prognostic value of cardiac computed tomography angiography. A systematic review and meta-analysis. J Am Coll Cardiol 2011; 57: 1237-1247
  • 11 Douglas PS, Hoffmann U, Patel MR. et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med 2015; 372: 1291-1300 doi:10.1056/NEJMoa1415516
  • 12 Gutberlet M. Kardiale Magnetresonanztomographie. Vom Bild zur Diagnose. Radiologe 2013; 53: 1033-1052
  • 13 Rossi A, Merkus D, Klotz E. et al. Stress myocardial perfusion: imaging with multidetector CT. Radiology 2014; 270: 25-46
  • 14 Schelbert HR. Anatomy and physiology of coronary blood flow. J Nucl Cardiol 2010; 17: 545-554
  • 15 Kwon SW, Kim YJ, Shim J. et al. Coronary artery calcium scoring does not add prognostic value to standard 64-section CT angiography protocol in low-risk patients suspected of having coronary artery disease. Radiology 2011; 259: 92-99
  • 16 Machida H, Tanaka I, Fukui R. et al. Current and novel imaging techniques in coronary CT. Radiographics 2015; 35: 991-1010
  • 17 Hulten E, Ahmadi A, Blankstein R. CT Assessment of myocardial perfusion and fractional flow reserve. Prog Cardiovasc Dis 2015; 57: 623-631
  • 18 Koo B K, Erglis A, Doh JH. et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 2011; 58: 1989-1997
  • 19 Min JK, Leipsic J, Pencina MJ. et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 2012; 308: 1237
  • 20 Nørgaard BL, Leipsic J, Gaur S. et al. NXT Trial Study Group. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 2014; 63: 1145-1155 doi:10.1016/j.jacc.2013.11.043
  • 21 Sharma RK, Arbab-Zadeh A, Kishi S. et al. Incremental diagnostic accuracy of computed tomography myocardial perfusion imaging over coronary angiography stratified by pre-test probability of coronary artery disease and severity of coronary artery calcification: The CORE320 study. Int J Cardiol 2015; 201: 570-577
  • 22 Blankstein R, Shturman LD, Rogers IS. et al. Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol 2009; 54: 1072-1084
  • 23 Chung HW, Ko SM, Hwang HK. et al. Diagnostic performance of coronary CT angiography, stress dual-energy CT perfusion, and stress perfusion single-photon emission computed tomography for coronary artery disease: comparison with combined invasive coronary angiography and stress perfusion cardiac MRI. Korean J Radiol 2017; 18: 476-486
  • 24 Huber AM, Leber V, Gramer BM. et al. Myocardium: dynamic versus single-shot CT perfusion imaging. Radiology 2013; 269: 378-386
  • 25 Takx RA, Blomberg BA, El Aidi H. et al. Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ Cardiovasc Imaging 2015; 8: e002666
  • 26 Bettencourt N, Chiribiri A, Schuster A. et al. Direct comparison of cardiac magnetic resonance and multidetector computed tomography stress-rest perfusion imaging for detection of coronary artery disease. J Am Coll Cardiol 2013; 61: 1099-1107
  • 27 Feuchtner G, Goetti R, Plass A. et al. Adenosine stress high-pitch 128-slice dual-source myocardial computed tomography perfusion for imaging of reversible myocardial ischemia: comparison with magnetic resonance imaging. Circ Cardiovasc Imaging 2011; 4: 540-549
  • 28 Vliegenthart R, Pelgrim GJ, Ebersberger U. et al. Dual-energy CT of the heart. AJR Am J Roentgenol 2012; 199(5 Suppl): S54-S63
  • 29 Greenwood JP, Maredia N, Younger JF. et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 2012; 379: 453-460 doi:10.1016/S0140-6736(11)61335-4
  • 30 Ebersberger U, Makowski MR, Schoepf UJ. et al. Magnetic resonance myocardial perfusion imaging at 3.0 Tesla for the identification of myocardial ischaemia: comparison with coronary catheter angiography and fractional flow reserve measurements. Eur Heart J Cardiovasc Imaging 2013; 14: 1174-1180 doi:10.1093/ehjci/jet074
  • 31 Desai RR, Jha S. Diagnostic performance of cardiac stress perfusion MRI in the detection of coronary artery disease using fractional flow reserve as the reference standard: a meta-analysis. AJR Am J Roentgenol 2013; 201: W245-W252