CC BY-NC-ND 4.0 · Laryngorhinootologie 2018; 97(S 01): S231-S278
DOI: 10.1055/s-0043-121791
Referat
Eigentümer und Copyright ©Georg Thieme Verlag KG 2018

Robotische Chirurgie – operiert der Roboter?

Article in several languages: deutsch | English
Patrick J. Schuler
1   Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Ulm
› Author Affiliations
Further Information

Publication History

Publication Date:
22 March 2018 (online)

Zusammenfassung

Der Roboter-assistierten Chirurgie (RAC) im Kopf-Hals-Bereich wird ein großes Potenzial zugeschrieben. Vor allem in der operativen Onkologie wird der Einsatz von Roboter-Systemen als besonders interessant erachtet. Bislang sind 2 Gerätetypen (DaVinci® und FLEX®) für die klinische Anwendung im Kopf-Hals-Bereich zugelassen, und multiple weitere Systeme befinden sich in der präklinischen Erprobungsphase. Auch wenn prinzipiell bestimmte Patientengruppen von der RAC profitieren könnten, finden sich keine systematischen randomisierten Studien. Ein möglicher Vorteil der RAC gegenüber den bisherigen Standardverfahren kann daher bisher nicht nachgewiesen werden. Der begrenzte klinische Nutzen und die finanzielle Zusatzbelastung scheinen aktuell der Hauptgrund zu sein, warum der flächendeckende Einsatz der RAC bislang ausgeblieben ist. Diese Übersichtsarbeit beschreibt die verschiedenen Anwendungsmöglichkeiten der RAC im Kopf-Hals-Bereich. Außerdem werden die finanziellen und technischen Herausforderungen, sowie anstehende Weiterentwicklungen der RAC beleuchtet. Besonderes Augenmerk wird auf spezielle Risiken der Roboter-Chirurgie und aktuell laufende klinische Studien gelegt. Mittelfristig wird davon ausgegangen, dass die RAC Einzug in die klinische Routine erhalten wird und sich das medizinische Personal zunehmend mit den technischen, wissenschaftlichen und auch ethischen Besonderheiten auseinandersetzen muss.

 
  • Literatur

  • 1 Al Kadah B, Piccoli M, Mullineris B. et al. Modifications of transaxillary approach in endoscopic da Vinci-assisted thyroid and parathyroid gland surgery. J Robot Surg 2015; 9: 37-44
  • 2 Albus JS. NBS/RIA Robotics Research Workshop: proceedings of the NBS/RIA Workshop on Robotic Research held at Gaithersburg, MD. November 13–15, 1979/sponsored by The Robot Institute of America. Washington: National Bureau of Standards. 1979
  • 3 Alemzadeh H, Raman J, Leveson N. et al. Adverse Events in Robotic Surgery: A Retrospective Study of 14 Years of FDA Data. PLoS One 2016; 11: e0151470
  • 4 Ali SM, Reisner LA, King B. et al. Eye gaze tracking for endoscopic camera positioning: an application of a hardware/software interface developed to automate Aesop. Stud Health Technol Inform 2008; 132: 4-7
  • 5 Allan M, Ourselin S, Thompson S. et al. Toward detection and localization of instruments in minimally invasive surgery. IEEE Trans Biomed Eng 2013; 60: 1050-1058
  • 6 Antoniou GA, Riga CV, Mayer EK. et al. Clinical applications of robotic technology in vascular and endovascular surgery. J Vasc Surg 2011; 53: 493-499
  • 7 Arshad H, Durmus K, Ozer E. Transoral robotic resection of selected parapharyngeal space tumors. Eur Arch Otorhinolaryngol 2013; 270: 1737-1740
  • 8 Aubry K, Vergez S, De Mones E. et al. Morbidity and mortality revue of the French group of transoral robotic surgery: a multicentric study. J Robot Surg 2016; 10: 63-67
  • 9 Ban EJ, Yoo JY, Kim WW. et al. Surgical complications after robotic thyroidectomy for thyroid carcinoma: a single center experience with 3,000 patients. Surg Endosc 2014; 28: 2555-2563
  • 10 Benali-Khoudja M, Hafez M, Alexandre JM. et al. Tactile interfaces: a state-of-the-art survey. Proc. Int. Symp. Robot 2004; 31: 23-26
  • 11 Benhidjeb T, Wilhelm T, Harlaar J. et al. Natural orifice surgery on thyroid gland: totally transoral video-assisted thyroidectomy (TOVAT): report of first experimental results of a new surgical method. Surg Endosc 2009; 23: 1119-1120
  • 12 Bethea BT, Okamura AM, Kitagawa M. et al. Application of haptic feedback to robotic surgery. J Laparoendosc Adv Surg Tech A 2004; 14: 191-195
  • 13 Biron VL, O’connell DA, Barber B. et al. Transoral robotic surgery with radial forearm free flap reconstruction: case control analysis. . J Otolaryngol Head Neck Surg 2017; 46: 20
  • 14 Blanco RG, Ha PK, Califano JA. et al. Robotic-assisted neck dissection through a pre- and post-auricular hairline incision: preclinical study. J Laparoendosc Adv Surg Tech A 2012; 22: 791-796
  • 15 Blanco RG, Ha PK, Califano JA. et al. Transoral robotic surgery of the vocal cord. J Laparoendosc Adv Surg Tech A 2011; 21: 157-159
  • 16 Blavier A, Gaudissart Q, Cadiere GB. et al. Impact of 2D and 3D vision on performance of novice subjects using da Vinci robotic system. Acta Chir Belg 2006; 106: 662-664
  • 17 Bolenz C, Freedland SJ, Hollenbeck BK. et al. Costs of radical prostatectomy for prostate cancer: a systematic review. Eur Urol 2014; 65: 316-324
  • 18 Bonawitz SC, Duvvuri U. Robot-assisted oropharyngeal reconstruction with free tissue transfer. J Reconstr Microsurg 2012; 28: 485-490
  • 19 Bowyer SA, Davies BL, Rodriguez F. Active constraints/virtual fixures: A survey. IEEE Trans Robot 2014; 30: 138-157
  • 20 Bumm K, Wurm J, Rachinger J. et al. An automated robotic approach with redundant navigation for minimal invasive extended transsphenoidal skull base surgery. Minim Invasive Neurosurg 2005; 48: 159-164
  • 21 Burgner-Kahrs J, Rucker DC, Choset H. Continuum Robots for Medical Applications: A Survey. IEEE Trans Robot 2015; 31: 1261-1280
  • 22 Burgner J, Rucker DC, Gilbert HB. et al. A Telerobotic System for Transnasal Surgery. IEEE ASME Trans Mechatron 2013; 19: 996-1006
  • 23 Burgner J, Swaney PJ, Lathrop RA. et al. Debulking from within: a robotic steerable cannula for intracerebral hemorrhage evacuation. IEEE Trans Biomed Eng 2013; 60: 2567-2575
  • 24 Byeon HK, Duvvuri U, Kim WS. et al. Transoral robotic retropharyngeal lymph node dissection with or without lateral oropharyngectomy. J Craniofac Surg 2013; 24: 1156-1161
  • 25 Byeon HK, Holsinger FC, Tufano RP. et al. Robotic total thyroidectomy with modified radical neck dissection via unilateral retroauricular approach. Ann Surg Oncol 2014; 21: 3872-3875
  • 26 Byeon HK, Kim Da H, Chang JW. et al. Comprehensive application of robotic retroauricular thyroidectomy: The evolution of robotic thyroidectomy. Laryngoscope 2016; 126: 1952-1957
  • 27 Byrd JK, Smith KJ, De Almeida JR. et al. Transoral Robotic Surgery and the Unknown Primary: A Cost-Effectiveness Analysis. Otolaryngol Head Neck Surg 2014; 150: 976-982
  • 28 Carrau RL, Prevedello DM, De Lara D. et al. Combined transoral robotic surgery and endoscopic endonasal approach for the resection of extensive malignancies of the skull base. Head Neck 2013; 35: E351-E358
  • 29 Castelnuovo P, Nicolai P, Turri-Zanoni M. et al. Endoscopic endonasal nasopharyngectomy in selected cancers. Otolaryngol Head Neck Surg 2013; 149: 424-430
  • 30 Chai YJ, Lee KE, Youn YK. Can robotic thyroidectomy be performed safely in thyroid carcinoma patients?. Endocrinol Metab (Seoul) 2014; 29: 226-232
  • 31 Chan JYW, Chan RCL, Chow VLY. et al. Transoral robotic total laryngopharyngectomy and free jejunal flap reconstruction for hypopharyngeal cancer. Oral Oncol 2017; 72: 194-196
  • 32 Chauvet D, Missistrano A, Hivelin M. et al. Transoral robotic-assisted skull base surgery to approach the sella turcica: cadaveric study. Neurosurg Rev 2014; 37: 609-617
  • 33 Cho HJ, Kang JW, Min HJ. et al. Robotic nasopharyngectomy via combined endonasal and transantral port: a preliminary cadaveric study. Laryngoscope 2015; 125: 1839-1843
  • 34 Chung TK, Rosenthal EL, Magnuson JS. et al. Transoral robotic surgery for oropharyngeal and tongue cancer in the United States. Laryngoscope 2015; 125: 140-145
  • 35 Cory L, Chu C. ADXS-HPV: a therapeutic Listeria vaccination targeting cervical cancers expressing the HPV E7 antigen. Hum Vaccin Immunother 2014; 10: 3190-3195
  • 36 Dallan I, Castelnuovo P, Montevecchi F. et al. Combined transoral transnasal robotic-assisted nasopharyngectomy: a cadaveric feasibility study. Eur Arch Otorhinolaryngol 2012; 269: 235-239
  • 37 Dallan I, Castelnuovo P, Seccia V. et al. Combined transnasal transcervical robotic dissection of posterior skull base: feasibility in a cadaveric model. Rhinology 2012; 50: 165-170
  • 38 De Almeida JR, Li R, Magnuson JS. et al. Oncologic Outcomes After Transoral Robotic Surgery: A Multi-institutional Study. JAMA Otolaryngol Head Neck Surg 2015; 141: 1043-1051
  • 39 De Almeida JR, Moskowitz AJ, Miles BA et al. Cost-effectiveness of transoral robotic surgery versus (chemo)radiotherapy for early T classification oropharyngeal carcinoma: A cost-utility analysis (ePub). Head Neck 2014
  • 40 De Almeida JR, Park RC, Genden EM. Reconstruction of transoral robotic surgery defects: principles and techniques. J Reconstr Microsurg 2012; 28: 465-472
  • 41 Dean NR, Rosenthal EL, Carroll WR. et al. Robotic-assisted surgery for primary or recurrent oropharyngeal carcinoma. Arch Otolaryngol Head Neck Surg 2010; 136: 380-384
  • 42 Diaz I, Gil JJ, Louredo M. A haptic pedal for surgery assistance. Comput Methods Programs Biomed 2014; 116: 97-104
  • 43 Dombree M, Crott R, Lawson G. et al. Cost comparison of open approach, transoral laser microsurgery and transoral robotic surgery for partial and total laryngectomies. Eur Arch Otorhinolaryngol 2014; 271: 2825-2834
  • 44 Duke WS, Holsinger FC, Kandil E. et al. Remote Access Robotic Facelift Thyroidectomy: A Multi-institutional Experience. World J Surg 2017; 41: 116-121
  • 45 Dziegielewski PT, Teknos TN, Durmus K. et al. Transoral Robotic Surgery for Oropharyngeal Cancer: Long-term Quality of Life and Functional Outcomes. JAMA Otolaryngol Head Neck Surg 2013; 1-9
  • 46 Enayati N, De Momi E, Ferrigno G. Haptics in Robot-Assisted Surgery: Challenges and Benefits. IEEE Rev Biomed Eng 2016; 9: 49-65
  • 47 Farrag TY, Lin FR, Cummings CW. et al. Neck management in patients undergoing postradiotherapy salvage laryngeal surgery for recurrent/persistent laryngeal cancer. Laryngoscope 2006; 116: 1864-1866
  • 48 Fernandez-Fernandez MM, Gonzalez LM, Calvo CR. et al. Transoral ultrasonic total laryngectomy (TOUSS-TL): description of a new endoscopic approach and report of two cases (ePub). Eur Arch Otorhinolaryngol 2016; 273: 2689-2696
  • 49 Friedman M, Hamilton C, Samuelson CG. et al. Transoral robotic glossectomy for the treatment of obstructive sleep apnea-hypopnea syndrome. Otolaryngol Head Neck Surg 2012; 146: 854-862
  • 50 Friedrich DT, Scheithauer MO, Greve J. et al. Potential Advantages of a Single-Port, Operator-Controlled Flexible Endoscope System for Transoral Surgery of the Larynx. Ann Otol Rhinol Laryngol 2015; 124: 655-662
  • 51 Friedrich DT, Scheithauer MO, Greve J. et al. Application of a computer-assisted flexible endoscope system for transoral surgery of the hypopharynx and upper esophagus. Eur Arch Otorhinolaryngol 2017; 274: 2287-2293
  • 52 Fujiwara K, Fukuhara T, Niimi K. et al. Load evaluation of the da Vinci surgical system for transoral robotic surgery. J Robot Surg 2015; 9: 315-319
  • 53 Fung K, Teknos TN, Vandenberg CD. et al. Prevention of wound complications following salvage laryngectomy using free vascularized tissue. Head Neck 2007; 29: 425-430
  • 54 Ganly I, Patel S, Matsuo J. et al. Postoperative complications of salvage total laryngectomy. Cancer 2005; 103: 2073-2081
  • 55 Garas G, Kythreotou A, Georgalas C. et al. Is transoral robotic surgery a safe and effective multilevel treatment for obstructive sleep apnoea in obese patients following failure of conventional treatment(s)?. Ann Med Surg (Lond) 2017; 19: 55-61
  • 56 Genden EM, Park R, Smith C. et al. The role of reconstruction for transoral robotic pharyngectomy and concomitant neck dissection. Arch Otolaryngol Head Neck Surg 2011; 137: 151-156
  • 57 Gleysteen J, Troob S, Light T. et al. The impact of prophylactic external carotid artery ligation on postoperative bleeding after transoral robotic surgery (TORS) for oropharyngeal squamous cell carcinoma. Oral Oncol 2017; 70: 1-6
  • 58 Golbin D, Musgrave B, Succar E. et al. Clinical analysis of drug-induced sleep endoscopy for the OSA patient. Laryngoscope 2016; 126: 249-253
  • 59 Hanna EY, Holsinger C, Demonte F. et al. Robotic endoscopic surgery of the skull base: a novel surgical approach. Arch Otolaryngol Head Neck Surg 2007; 133: 1209-1214
  • 60 Hay A, Migliacci J, Karassawa Zanoni D. et al. Complications following transoral robotic surgery (TORS): A detailed institutional review of complications. Oral Oncol 2017; 67: 160-166
  • 61 Hockstein NG, O’malley Jr. BW, Weinstein GS. Assessment of intraoperative safety in transoral robotic surgery. Laryngoscope 2006; 116: 165-168
  • 62 Hoff PT, D’agostino MA, Thaler ER. Transoral robotic surgery in benign diseases including obstructive sleep apnea: Safety and feasibility. Laryngoscope 2015; 125: 1249-1253
  • 63 Hoffmann TK, Friedrich DT, Schuler PJ. [Robot-assisted surgery in the head and neck region]. HNO 2016; 64: 658-666
  • 64 Hoffmann TK, Schuler PJ, Bankfalvi A. et al. Comparative analysis of resection tools suited for transoral robot-assisted surgery. Eur Arch Otorhinolaryngol 2014; 271: 1207-1213
  • 65 Holsinger FC, Ferris RL. Transoral Endoscopic Head and Neck Surgery and Its Role Within the Multidisciplinary Treatment Paradigm of Oropharynx Cancer: Robotics, Lasers, and Clinical Trials. J Clin Oncol 2015; 33: 3285-3292
  • 66 Hurtuk AM, Marcinow A, Agrawal A. et al. Quality-of-life outcomes in transoral robotic surgery. Otolaryngol Head Neck Surg 2012; 146: 68-73
  • 67 Intuitivesurgical Annual Report. http://www.annualreports.com/Company/intuitive-surgical-inc 2016
  • 68 Ishikawa N, Kawaguchi M, Moriyama H. et al. Robot-assisted thyroidectomy with novel camera-port retractor. Innovations (Phila) 2013; 8: 384-388
  • 69 Jenkins K, Nguyen V, Zhu R. et al. Piezotronic Effect: An Emerging Mechanism for Sensing Applications. Sensors (Basel) 2015; 15: 22914-22940
  • 70 Kaczmar JM, Tan KS, Heitjan DF. et al. HPV-related oropharyngeal cancer: Risk factors for treatment failure in patients managed with primary transoral robotic surgery. Head Neck 2016; 38: 59-65
  • 71 Kajiwara N, Patrick Barron J, Kato Y. et al. Cost-Benefit Performance of Robotic Surgery Compared with Video-Assisted Thoracoscopic Surgery under the Japanese National Health Insurance System. Ann Thorac Cardiovasc Surg 2015; 21: 95-101
  • 72 Kang SW, Jeong JJ, Yun JS. et al. Gasless endoscopic thyroidectomy using trans- axillary approach; surgical outcome of 581 patients. Endocr J 2009; 56: 361-369
  • 73 Kang SW, Lee SH, Ryu HR. et al. Initial experience with robot-assisted modified radical neck dissection for the management of thyroid carcinoma with lateral neck node metastasis. Surgery 2010; 148: 1214-1221
  • 74 Kayhan FT, Kaya KH, Sayin I. Transoral robotic cordectomy for early glottic carcinoma. Ann Otol Rhinol Laryngol 2012; 121: 497-502
  • 75 Kazanzides P, Chen Z, Deguet A. et al. An Open-Source Research Kit for the da Vinci Surgical System. 2014 IEEE International Conference on Robotics & Automation (ICRA) 978-1-4799-3685-4/14/. 2014
  • 76 Kim U, Lee DH, Yoon WJ. et al. Force Sensor Integrated Surgical Forceps for Minimally Invasive Robotic Surgery. Ieee T Robot 2015; 31: 1214-1224
  • 77 Kim WS, Ban MJ, Chang JW. et al. Learning curve for robot-assisted neck dissection in head and neck cancer: a 3-year prospective case study and analysis. JAMA Otolaryngol Head Neck Surg 2014; 140: 1191-1197
  • 78 Kim WS, Byeon HK, Park YM. et al. Therapeutic robot-assisted neck dissection via a retroauricular or modified facelift approach in head and neck cancer: a comparative study with conventional transcervical neck dissection. Head Neck 2015; 37: 249-254
  • 79 Kim WS, Koh YW, Byeon HK. et al. Robot-assisted neck dissection via a transaxillary and retroauricular approach versus a conventional transcervical approach in papillary thyroid cancer with cervical lymph node metastases. J Laparoendosc Adv Surg Tech A 2014; 24: 367-372
  • 80 Kim WS, Lee HS, Kang SM. et al. Feasibility of robot-assisted neck dissections via a transaxillary and retroauricular ("TARA") approach in head and neck cancer: preliminary results. Ann Surg Oncol 2012; 19: 1009-1017
  • 81 Kitagawa M, Dokko D, Okamura AM. et al. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems. J Thorac Cardiovasc Surg 2005; 129: 151-158
  • 82 Koliakos N, Denaeyer G, Willemsen P. et al. Failure of a robotic arm during da Vinci prostatectomy: a case report. J Robot Surg 2008; 2: 95-96
  • 83 Kraft M, Fostiropoulos K, Gurtler N. et al. Value of narrow band imaging in the early diagnosis of laryngeal cancer. Head Neck 2016; 38: 15-20
  • 84 Kraft M, Mende S, Arnoux A. et al. Anatomical landmarks for endosonography of the larynx. Head Neck 2010; 32: 326-332
  • 85 Krishnan G, Krishnan S. Transoral Robotic Surgery Total Laryngectomy: Evaluation of Functional and Survival Outcomes in a Retrospective Case Series at a Single Institution. ORL J Otorhinolaryngol Relat Spec 2017; 79: 191-201
  • 86 Kristin J, Kolmer A, Kraus P. et al. Development of a new endoscope holder for head and neck surgery – from the technical design concept to implementation. Eur Arch Otorhinolaryngol 2015; 272: 1239-1244
  • 87 Kubik M, Mandal R, Albergotti W. et al. Effect of transcervical arterial ligation on the severity of postoperative hemorrhage after transoral robotic surgery. Head Neck 2017; 39: 1510-1515
  • 88 Kucur C, Durmus K, Dziegielewski PT. et al. Transoral robot-assisted carbon dioxide laser surgery for hypopharyngeal cancer. Head Neck 2015; 37: 743-745
  • 89 Kupferman ME, Demonte F, Levine N. et al. Feasibility of a robotic surgical approach to reconstruct the skull base. Skull Base 2011; 21: 79-82
  • 90 Kuppersmith RB, Holsinger FC. Robotic thyroid surgery: an initial experience with North American patients. Laryngoscope 2011; 121: 521-526
  • 91 Laccourreye O, Malinvaud D, Garcia D. et al. Postoperative hemorrhage after transoral oropharyngectomy for cancer of the lateral oropharynx. Ann Otol Rhinol Laryngol 2015; 124: 361-367
  • 92 Lallemant B, Chambon G, Galy-Bernadoy C. et al. Transaxillary robotic thyroid surgery: a preliminary European experience. Eur Thyroid J 2013; 2: 110-115
  • 93 Lallemant B, Chambon G, Garrel R. et al. Transoral robotic surgery for the treatment of T1-T2 carcinoma of the larynx: preliminary study. Laryngoscope 2013; 123: 2485-2490
  • 94 Lang S, Mattheis S, Hasskamp P. et al. A european multicenter study evaluating the flex robotic system in transoral robotic surgery. Laryngoscope 2016; 127: 391-395 doi: 10.1002/lary.26358. Epub 2016 Oct 26.
  • 95 Lawson G, Mendelsohn AH, Van Der Vorst S. et al. Transoral robotic surgery total laryngectomy. Laryngoscope 2013; 123: 193-196
  • 96 Lee HS, Kim D, Lee SY. et al. Robot-assisted versus endoscopic submandibular gland resection via retroauricular approach: a prospective nonrandomized study. Br J Oral Maxillofac Surg 2014; 52: 179-184
  • 97 Lee HS, Kim WS, Hong HJ. et al. Robot-assisted Supraomohyoid neck dissection via a modified face-lift or retroauricular approach in early-stage cN0 squamous cell carcinoma of the oral cavity: a comparative study with conventional technique. Ann Surg Oncol 2012; 19: 3871-3878
  • 98 Lee HY, You JY, Woo SU. et al. Transoral periosteal thyroidectomy: cadaver to human. Surg Endosc 2015; 29: 898-904
  • 99 Lee J, Kang SW, Jung JJ. et al. Multicenter study of robotic thyroidectomy: short- term postoperative outcomes and surgeon ergonomic considerations. Ann Surg Oncol 2011; 18: 2538-2547
  • 100 Lee J, Yun JH, Choi UJ. et al. Robotic versus Endoscopic Thyroidectomy for Thyroid Cancers: A Multi-Institutional Analysis of Early Postoperative Outcomes and Surgical Learning Curves. J Oncol 2012; 2012: 734541
  • 101 Lee JY, Lega B, Bhowmick D. et al. Da Vinci Robot-assisted transoral odontoidectomy for basilar invagination. ORL J Otorhinolaryngol Relat Spec 2010; 72: 91-95
  • 102 Lee S, Kim HY, Lee CR. et al. A prospective comparison of patient body image after robotic thyroidectomy and conventional open thyroidectomy in patients with papillary thyroid carcinoma. Surgery 2014; 156: 117-125
  • 103 Lee SY, Park YM, Byeon HK. et al. Comparison of oncologic and functional outcomes after transoral robotic lateral oropharyngectomy versus conventional surgery for T1 to T3 tonsillar cancer. Head Neck 2014; 36: 1138-1145
  • 104 Lim SC, Lee HK, Park J. Role of combined tactile and kinesthetic feedback in minimally invasive surgery (ePub!). Int J Med Robot 2014; Oct 18 DOI: doi: 10.1002/rcs.1625. [Epub ahead of print].
  • 105 Linos D, Kiriakopoulos A, Petralias A. Patient attitudes toward transaxillary robot-assisted thyroidectomy. World J Surg 2013; 37: 1959-1965
  • 106 Lira RB, Chulam TC, De Carvalho GB. et al. Retroauricular endoscopic and robotic versus conventional neck dissection for oral cancer (ePub). J Robot Surg 2017; May 4 DOI: doi: 10.1007/s11701-017-0706-0. [Epub ahead of print].
  • 107 Lobe TE, Wright SK, Irish MS. Novel uses of surgical robotics in head and neck surgery. J Laparoendosc Adv Surg Tech A 2005; 15: 647-652
  • 108 Lorincz BB, Busch CJ, Mockelmann N. et al. Feasibility and safety of transoral robotic surgery (TORS) for early hypopharyngeal cancer: a subset analysis of the Hamburg University TORS-trial. Eur Arch Otorhinolaryngol 2015; 272: 2993-2998
  • 109 Lorincz BB, Mockelmann N, Busch CJ. et al. Two-Year Survival Analysis of 50 Consecutive Head and Neck Cancer Patients Treated with Transoral Robotic Surgery in a Single European Centre. Ann Surg Oncol 2015; 22 (Suppl. 03) 1028-1033
  • 110 Ly HH, Tanaka Y, Fukuda T. et al. Grasper having tactile sensing function using acoustic reflection for laparoscopic surgery. Int J Comput Assist Radiol Surg 2017; 12: 1333-1343
  • 111 Marescaux J, Leroy J, Gagner M. et al. Transatlantic robot-assisted telesurgery. Nature 2001; 413: 379-380
  • 112 Mattheis S, Hoffmann TK, Schuler PJ. et al. [The use of a flexible CO2-laser fiber in transoral robotic surgery (TORS)]. Laryngorhinootologie 2014; 93: 95-99
  • 113 Mattheis S, Mandapathil M, Rothmeier N. et al. [Transoral robotic surgery for head and neck tumors: a series of 17 patients]. Laryngorhinootologie 2012; 91: 768-773
  • 114 Mattos LS, Deshpande N, Barresi G. et al. A novel computerized surgeon- machine interface for robot-assisted laser phonomicrosurgery. Laryngoscope 2014; 124: 1887-1894
  • 115 Mccool RR, Warren FM, Wiggins 3rd RH. et al. Robotic surgery of the infratemporal fossa utilizing novel suprahyoid port. Laryngoscope 2010; 120: 1738-1743
  • 116 Meccariello G, Cammaroto G, Montevecchi F. et al. Transoral robotic surgery for the management of obstructive sleep apnea: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol 2017; 274: 647-653
  • 117 Meccariello G, Faedi F, Alghamdi S. et al. An experimental study about haptic feedback in robotic surgery: may visual feedback substitute tactile feedback?. J Robot Surg 2016; 10: 57-61
  • 118 Mendelsohn AH, Remacle M, Van Der Vorst S. et al. Outcomes following transoral robotic surgery: supraglottic laryngectomy. Laryngoscope 2013; 123: 208-214
  • 119 Mercante G, Ruscito P, Pellini R. et al. Transoral robotic surgery (TORS) for tongue base tumours. Acta Otorhinolaryngol Ital 2013; 33: 230-235
  • 120 Meulemans J, Delaere P, Vander Poorten V. Early experience in transoral robotic surgery (TORS) for non-oropharyngeal head and neck malignancies: a review of functional and oncologic outcomes. B-ENT 2015; Suppl 24: 21-31
  • 121 Meulemans J, Vanclooster C, Vauterin T. et al. Up-front and Salvage Transoral Robotic Surgery for Head and Neck Cancer: A Belgian Multicenter Retrospective Case Series. Front Oncol 2017; 7: 15
  • 122 Moore EJ, Janus J, Kasperbauer J. Transoral robotic surgery of the oropharynx: Clinical and anatomic considerations. Clin Anat 2012; 25: 135-141
  • 123 Moore EJ, Van Abel KM, Olsen KD. Transoral robotic surgery in the seated position: Rethinking our operative approach. Laryngoscope 2017; 127: 122-126
  • 124 Morimoto TK, Greer JD, Hsieh MH. et al. Surgeon Design Interface for Patient- Specific Concentric Tube Robots. Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron 2016; 2016: 41-48
  • 125 Mukhija VK, Sung CK, Desai SC. et al. Transoral robotic assisted free flap reconstruction. Otolaryngol Head Neck Surg 2009; 140: 124-125
  • 126 Nathan CO, Chakradeo V, Malhotra K. et al. The voice-controlled robotic assist scope holder AESOP for the endoscopic approach to the sella. Skull Base 2006; 16: 123-131
  • 127 Nichols AC, Yoo J, Hammond JA. et al. Early-stage squamous cell carcinoma of the oropharynx: radiotherapy vs. trans-oral robotic surgery (ORATOR) – study protocol for a randomized phase II trial. BMC Cancer 2013; 13: 133
  • 128 Noh Y, Bimbo J, Sareh S et al. Multi-Axis Force/Torque Sensor Based on Simply-Supported Beam and Optoelectronics. Sensors (Basel) 2016; 16: pii: E1936
  • 129 O’malley Jr. BW, Quon H, Leonhardt FD. et al. Transoral robotic surgery for parapharyngeal space tumors. ORL J Otorhinolaryngol Relat Spec 2010; 72: 332-336
  • 130 O’malley Jr. BW, Weinstein GS. Robotic anterior and midline skull base surgery: preclinical investigations. Int J Radiat Oncol Biol Phys 2007; 69: S 125-S 128
  • 131 O’malley Jr. BW, Weinstein GS, Snyder W. et al. Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope 2006; 116: 1465-1472
  • 132 Okamura AM. Haptic feedback in robot-assisted minimally invasive surgery. Curr Opin Urol 2009; 19: 102-107
  • 133 Olds K, Hillel A, Kriss J. et al. A robotic assistant for trans-oral surgery: the robotic endo-laryngeal flexible (Robo-ELF) scope. J Robot Surg 2012; 6: 13-18
  • 134 Olds K, Hillel AT, Cha E. et al. Robotic endolaryngeal flexible (Robo-ELF) scope: a preclinical feasibility study. Laryngoscope 2011; 121: 2371-2374
  • 135 Olsen SM, Moore EJ, Koch CA. et al. Transoral robotic surgery for supraglottic squamous cell carcinoma. Am J Otolaryngol 2012; 33: 379-384
  • 136 Ozer E, Durmus K, Carrau RL. et al. Applications of transoral, transcervical, transnasal, and transpalatal corridors for robotic surgery of the skull base. Laryngoscope 2013; 123: 2176-2179
  • 137 Ozer E, Waltonen J. Transoral robotic nasopharyngectomy: a novel approach for nasopharyngeal lesions. Laryngoscope 2008; 118: 1613-1616
  • 138 Pacchierotti C, Prattichizzo D, Kuchenbecker KJ. Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery. IEEE Trans Biomed Eng 2016; 63: 278-287
  • 139 Park YM, Byeon HK, Chung HP. et al. Comparison of treatment outcomes after transoral robotic surgery and supraglottic partial laryngectomy: Our experience with seventeen and seventeen patients respectively. Clin Otolaryngol 2013; 38: 270-274
  • 140 Park YM, Byeon HK, Chung HP. et al. Comparison study of transoral robotic surgery and radical open surgery for hypopharyngeal cancer. Acta Otolaryngol 2013; 133: 641-648
  • 141 Park YM, Jung CM, Cha D. et al. The long-term oncological and functional outcomes of transoral robotic surgery in patients with hypopharyngeal cancer. Oral Oncol 2017; 71: 138-143
  • 142 Park YM, Lee WJ, Yun IS. et al. Free flap reconstruction after robot-assisted neck dissection via a modified face-lift or retroauricular approach. Ann Surg Oncol 2013; 20: 891-898
  • 143 Pollei TR, Hinni ML, Moore EJ. et al. Analysis of postoperative bleeding and risk factors in transoral surgery of the oropharynx. JAMA Otolaryngol Head Neck Surg 2013; 139: 1212-1218
  • 144 Rangarajan S, Hachem RA, Ozer E. et al. Robotics in Sinus and Skull Base Surgery. Otolaryngol Clin North Am 2017; 50: 633-641
  • 145 Razafindranaly V, Lallemant B, Aubry K. et al. Clinical outcomes with transoral robotic surgery for supraglottic squamous cell carcinoma: Experience of a French evaluation cooperative subgroup of GETTEC. Head Neck 2016; 38 (Suppl. 01) E1097-E1101
  • 146 Reiley CE, Akinbiyi T, Burschka D. et al. Effects of visual force feedback on robot-assisted surgical task performance. J Thorac Cardiovasc Surg 2008; 135: 196-202
  • 147 Richmon JD. Transoral palate-sparing nasopharyngectomy with the Flex(R) System: preclinical study. Laryngoscope 2015; 125: 318-322
  • 148 Richmon JD, Holsinger FC, Kandil E. et al. Transoral robotic-assisted thyroidectomy with central neck dissection: preclinical cadaver feasibility study and proposed surgical technique. J Robot Surg 2011; 5: 279-282
  • 149 Richmon JD, Kim HY. Transoral robotic thyroidectomy (TORT): procedures and outcomes. Gland Surg 2017; 6: 285-289
  • 150 Richmon JD, Pattani KM, Benhidjeb T. et al. Transoral robotic-assisted thyroidectomy: a preclinical feasibility study in 2 cadavers. Head Neck 2011; 33: 330-333
  • 151 Rodin D, Caulley L, Burger E. et al. Cost-Effectiveness Analysis of Radiation Therapy Versus Transoral Robotic Surgery for Oropharyngeal Squamous Cell Carcinoma. Int J Radiat Oncol Biol Phys 2017; 97: 709-717
  • 152 Rudmik L, An W, Livingstone D. et al. Making a case for high-volume robotic surgery centers: A cost-effectiveness analysis of transoral robotic surgery. J Surg Oncol 2015; 112: 155-163
  • 153 Russell JO, Clark J, Noureldine SI. et al. Transoral thyroidectomy and parathyroidectomy – A North American series of robotic and endoscopic transoral approaches to the central neck. Oral Oncol 2017; 71: 75-80
  • 154 Saccomandi P, Schena E, Oddo CM. et al. Microfabricated tactile sensors for biomedical applications: a review. Biosensors (Basel) 2014; 4: 422-448
  • 155 Schneider JS, Burgner J, Webster 3rd RJ. et al. Robotic surgery for the sinuses and skull base: what are the possibilities and what are the obstacles?. Curr Opin Otolaryngol Head Neck Surg 2013; 21: 11-16
  • 156 Schoob A, Kundrat D, Kahrs LA. et al. Comparative study on surface reconstruction accuracy of stereo imaging devices for microsurgery. Int J Comput Assist Radiol Surg 2016; 11: 145-156
  • 157 Schoob A, Laves MH, Kahrs LA. et al. Soft tissue motion tracking with application to tablet-based incision planning in laser surgery. Int J Comput Assist Radiol Surg 2016; 11: 2325-2337
  • 158 Schuler PJ, Duvvuri U, Friedrich DT. et al. First use of a computer-assisted operator-controlled flexible endoscope for transoral surgery. Laryngoscope 2015; 125: 645-648
  • 159 Schuler PJ, Hoffmann TK, Duvvuri U. et al. Demonstration of nasopharyngeal surgery with a single port operator-controlled flexible endoscope system. Head Neck 2016; 38: 370-374
  • 160 Schuler PJ, Hoffmann TK, Veit JA et al. Hybrid procedure for total laryngectomy with a flexible robot-assisted surgical system. Int J Med Robot 2016; 13. doi: 10.1002/rcs.1749. Epub 2016 May 16.
  • 161 Schuler PJ, Scheithauer M, Rotter N. et al. A single-port operator-controlled flexible endoscope system for endoscopic skull base surgery. HNO 2015; 63: 189-194
  • 162 Sher DJ, Fidler MJ, Tishler RB. et al. Cost-Effectiveness Analysis of Chemoradiation Therapy Versus Transoral Robotic Surgery for Human Papillomavirus- Associated, Clinical N2 Oropharyngeal Cancer. Int J Radiat Oncol Biol Phys 2016; 94: 512-522
  • 163 Smith RV, Schiff BA, Sarta C. et al. Transoral robotic total laryngectomy. Laryngoscope 2013; 123: 678-682
  • 164 Solares CA, Strome M. Transoral robot-assisted CO2 laser supraglottic laryngectomy: experimental and clinical data. Laryngoscope 2007; 117: 817-820
  • 165 Song CM, Cho YH, Ji YB. et al. Comparison of a gasless unilateral axillo-breast and axillary approach in robotic thyroidectomy. Surg Endosc 2013; 27: 3769-3775
  • 166 Song CM, Yun BR, Ji YB. et al. Long-Term Voice Outcomes After Robotic Thyroidectomy. World J Surg 2016; 40: 110-116
  • 167 Song HG, Yun IS, Lee WJ. et al. Robot-assisted free flap in head and neck reconstruction. Arch Plast Surg 2013; 40: 353-358
  • 168 Sreenath SB, Rawal RB, Zanation AM. The combined endonasal and transoral approach for the management of skull base and nasopharyngeal pathology: a case series. Neurosurg Focus 2014; 37: E2
  • 169 Stock K, Diebolder R, Hausladen F et al. Primary investigations on the potential of a novel diode pumped Er: YAG laser system for bone surgery. Photonic Therapeutics and Diagnostics IX, Proceedings of the SPIE 85656, 85656D. 2013
  • 170 Stock K, Stegmayer T, Graser R. et al. Comparison of different focusing fiber tips for improved oral diode laser surgery. Lasers Surg Med 2012; 44: 815-823
  • 171 Strauss G, Hofer M, Kehrt S. et al. [Manipulator assisted endoscope guidance in functional endoscopic sinus surgery: proof of concept]. HNO 2007; 55: 177-184
  • 172 Tae K, Ji YB, Song CM. et al. Robotic selective neck dissection using a gasless postauricular facelift approach for early head and neck cancer: technical feasibility and safety. J Laparoendosc Adv Surg Tech A 2013; 23: 240-245
  • 173 Tang B, Hanna GB, Cuschieri A. Analysis of errors enacted by surgical trainees during skills training courses. Surgery 2005; 138: 14-20
  • 174 Terris DJ, Singer MC. Qualitative and quantitative differences between 2 robotic thyroidectomy techniques. Otolaryngol Head Neck Surg 2012; 147: 20-25
  • 175 Thaler ER, Rassekh CH, Lee JM. et al. Outcomes for multilevel surgery for sleep apnea: Obstructive sleep apnea, transoral robotic surgery, and uvulopalatopharyngoplasty. Laryngoscope 2016; 126: 266-269
  • 176 Tibbetts KM, Tan M. Role of Advanced Laryngeal Imaging in Glottic Cancer: Early Detection and Evaluation of Glottic Neoplasms. Otolaryngol Clin North Am 2015; 48: 565-584
  • 177 Trevillot V, Garrel R, Dombre E. et al. Robotic endoscopic sinus and skull base surgery: review of the literature and future prospects. Eur Ann Otorhinolaryngol Head Neck Dis 2013; 130: 201-207
  • 178 Troob S, Givi B, Hodgson M. et al. Transoral robotic retropharyngeal node dissection in oropharyngeal squamous cell carcinoma: Patterns of metastasis and functional outcomes. Head Neck 2017; 39: 1969-1975
  • 179 Tsang RK, Ho WK, Wei WI. et al. Transoral robotic assisted nasopharyngectomy via a lateral palatal flap approach. Laryngoscope 2013; 123: 2180-2183
  • 180 Tsang RK, Holsinger FC. Transoral endoscopic nasopharyngectomy with a flexible next-generation robotic surgical system. Laryngoscope 2016; 126: 2257-2262
  • 181 Tsang RK, To VS, Ho AC. et al. Early results of robotic assisted nasopharyngectomy for recurrent nasopharyngeal carcinoma. Head Neck 2015; 37: 788-793
  • 182 Van Der Meijden OA, Schijven MP. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review. Surg Endosc 2009; 23: 1180-1190
  • 183 Vicini C, Montevecchi F, Campanini A. et al. Clinical outcomes and complications associated with TORS for OSAHS: a benchmark for evaluating an emerging surgical technology in a targeted application for benign disease. ORL J Otorhinolaryngol Relat Spec 2014; 76: 63-69
  • 184 Wagner OJ, Hagen M, Kurmann A. et al. Three-dimensional vision enhances task performance independently of the surgical method. Surg Endosc 2012; 26: 2961-2968
  • 185 Wang C, Kundaria S, Fernandez-Miranda J. et al. A description of the anatomy of the glossopharyngeal nerve as encountered in transoral surgery. Laryngoscope 2016; 126: 2010-2015
  • 186 Wang CC, Liu SA, Wu SH. et al. Transoral robotic surgery for early glottic carcinoma involving anterior commissure: Preliminary reports. Head Neck 2016; 38: 913-918
  • 187 Wang CC, Liu SA, Wu SH. et al. Transoral robotic surgery for early T classification hypopharyngeal cancer. Head Neck 2016; 38: 857-862
  • 188 Wei WI, Chan JY, Ng RW. et al. Surgical salvage of persistent or recurrent nasopharyngeal carcinoma with maxillary swing approach – Critical appraisal after 2 decades. Head Neck 2011; 33: 969-975
  • 189 Wei WI, Ho WK. Transoral robotic resection of recurrent nasopharyngeal carcinoma. Laryngoscope 2010; 120: 2011-2014
  • 190 Wei WI, Kwong DL. Recurrent nasopharyngeal carcinoma: surgical salvage vs. additional chemoradiation. Curr Opin Otolaryngol Head Neck Surg 2011; 19: 82-86
  • 191 Weinstein GS, O’malley Jr. BW, Hockstein NG. Transoral robotic surgery: supraglottic laryngectomy in a canine model. Laryngoscope 2005; 115: 1315-1319
  • 192 Weinstein GS, O’malley Jr. BW, Magnuson JS. et al. Transoral robotic surgery: a multicenter study to assess feasibility, safety, and surgical margins. Laryngoscope 2012; 122: 1701-1707
  • 193 Weinstein GS, O’malley Jr. BW, Snyder W. et al. Transoral robotic surgery: supraglottic partial laryngectomy. Ann Otol Rhinol Laryngol 2007; 116: 19-23
  • 194 Weinstein GS, O’malley Jr. BW, Snyder W. et al. Transoral robotic surgery: radical tonsillectomy. Arch Otolaryngol Head Neck Surg 2007; 133: 1220-1226
  • 195 Wottawa CR, Genovese B, Nowroozi BN. et al. Evaluating tactile feedback in robotic surgery for potential clinical application using an animal model. Surg Endosc 2016; 30: 3198-3209
  • 196 Wu L, Song S, Wu K. et al. Development of a compact continuum tubular robotic system for nasopharyngeal biopsy. Med Biol Eng Comput 2017; 55: 403-417
  • 197 Yeh DH, Tam S, Fung K. et al. Transoral robotic surgery vs. radiotherapy for management of oropharyngeal squamous cell carcinoma – A systematic review of the literature. Eur J Surg Oncol 2015; 41: 1603-1614
  • 198 Yin Tsang RK, Ho WK, Wei WI. Combined transnasal endoscopic and transoral robotic resection of recurrent nasopharyngeal carcinoma. Head Neck 2012; 34: 1190-1193
  • 199 Zenga J, Suko J, Kallogjeri D. et al. Postoperative hemorrhage and hospital revisit after transoral robotic surgery. Laryngoscope 2017; 127: 2287-2292
  • 200 Zhou S, Zhang C, Li D. Approaches of robot-assisted neck dissection for head and neck cancer: a review. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 121: 353-359