Anästhesiol Intensivmed Notfallmed Schmerzther 2018; 53(02): 112-125
DOI: 10.1055/s-0043-122136
Topthema
CME-Fortbildung
Georg Thieme Verlag KG Stuttgart · New York

ARDS – Ein Update – Teil 2: Therapie und Outcome

ARDS – An Update – Part 2: Therapy and Outcome
Rolf Dembinski
,
Frank Mielck
Further Information

Publication History

Publication Date:
09 February 2018 (online)

Zusammenfassung

Das Acute respiratory Distress Syndrome (ARDS) ist nunmehr seit über 50 Jahren als gravierende Komplikation verschiedener Grunderkrankungen bekannt [1]. Trotz intensiver Forschung in all dieser Zeit gibt es hinsichtlich der bestmöglichen Therapie des ARDS auch heute noch viele offene Fragen – insbesondere zur maschinellen Beatmung. Der zweite Teil des Update ARDS gibt einen aktualisierten Überblick zu Therapie und Outcome des ARDS.

Abstract

The Acute Respiratory Distress Syndrome (ARDS) is defined by hypoxemic respiratory failure due to inflammatory response within the lung usually requiring invasive mechanical ventilation. Despite more than 50 years of scientific research numerous issues especially regarding mechanical ventilation as the most important treatment option remain unclear. Most important, adjustment of mechanical ventilation is challenging due to desirable beneficial effects on pulmonary gas exchange on the one hand and deleterious effects in terms of ventilator-associated lung injury on the other. Specifically, optimal settings of positive end-expiratory pressure and the role of spontaneous breathing activity are still controversial. Because no specific pharmacological therapy revealed beneficial effects until today, adjunctive treatment is actually limited to prone positioning and restrictive fluid balance. Long-term outcome of ARDS survivors is often affected by anxiety and mental health disorders.

Kernaussagen
  • Zentrale Behandlungsstrategie beim ARDS ist neben der Behandlung der Grunderkrankung die maschinelle Beatmung.

  • Die Einstellung der maschinellen Beatmung muss einen suffizienten Gasaustausch sicherstellen, ohne einen ventilatorassoziierten Lungenschaden zu verursachen.

  • Die Einstellung des positiven endexspiratorischen Drucks (PEEP) ist dabei von zentraler Bedeutung – allerdings gibt es bis heute keine Evidenz für eine bestimmte Strategie zur Adjustierung des PEEP. Tendenziell sollte vor allem in der Frühphase des schweren ARDS ein hoher PEEP eingestellt werden.

  • Einfache Hilfsmittel zur orientierenden PEEP-Einstellung sind die PEEP-Tabelle sowie die Kontrolle des Driving Pressure.

  • Der mögliche Nutzen und Schaden von Spontanatmungsaktivität ist für die Frühphase des ARDS umstritten, nach erster Stabilisierung des Gasaustausches überwiegen jedoch eindeutig deren Vorteile.

  • Bei therapierefraktärer Hypoxämie stellen extrakorporale Gasaustauschverfahren eine wichtige Therapieoption im Rahmen eines Gesamtbehandlungskonzeptes dar.

  • Das wichtigste adjuvante Verfahren ist die Bauchlagerung für mindestens 16 Stunden. Zudem sollte eine restriktive Flüssigkeitsbilanz angestrebt werden.

  • Eine gezielte medikamentöse Therapieoption gibt es nicht.

 
  • Literatur

  • 1 Slutsky AS, Villar J, Pesenti A. Happy 50th birthday ARDS!. Intensive Care Med 2016; 42: 637-639
  • 2 Gattinoni L, Quintel M. Is mechanical ventilation a cure for ARDS?. Intensive Care Med 2016; 42: 916-917
  • 3 Carrasco Loza R, Villamizar Rodriguez G, Medel Fernandez N. Ventilator-induced lung injury (VILI) in acute respiratory distress syndrome (ARDS): volutrauma and molecular effects. Open Respir Med J 2015; 9: 112-119
  • 4 Grieco DL, Chen L, Brochard L. Transpulmonary pressure: importance and limits. Ann Transl Med 2017; 5: 285
  • 5 Gattinoni L, Protti A, Caironi P. et al. Ventilator-induced lung injury: the anatomical and physiological framework. Crit Care Med 2010; 38(10 Suppl): S539-S548
  • 6 Hsu AT, Barrett CD, DeBusk GM. et al. Kinetics and role of plasma matrix metalloproteinase-9 expression in acute lung injury and the acute respiratory distress syndrome. Shock 2015; 44: 128-136
  • 7 Schwingshackl A. The role of stretch-activated ion channels in acute respiratory distress syndrome: finally a new target?. Am J Physiol Lung Cell Mol Physiol 2016; 311: L639-652
  • 8 Quilez ME, Lopez-Aguilar J, Blanch L. Organ crosstalk during acute lung injury, acute respiratory distress syndrome, and mechanical ventilation. Curr Opin Crit Care 2012; 18: 23-28
  • 9 Brower RG, Matthay MA, Morris A. et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342: 1301-1308
  • 10 Umbrello M, Marino A, Chiumello D. Tidal volume in acute respiratory distress syndrome: how best to select it. Ann Transl Med 2017; 5: 287
  • 11 Gattinoni L, Caironi P, Cressoni M. et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 2006; 354: 1775-1786
  • 12 Grasso S, Stripoli T, De Michele M. et al. ARDSnet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure. Am J Respir Crit Care Med 2007; 176: 761-767
  • 13 Briel M, Meade M, Mercat A. et al. Higher vs. lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 2010; 303: 865-873
  • 14 Sahetya SK, Goligher EC, Brower RG. Fifty years of research in ARDS. Setting positive end-expiratory pressure in acute respiratory distress syndrome. Am J Respir Crit Care Med 2017; 195: 1429-1438
  • 15 Bellani G, Laffey JG, Pham T. et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 2016; 315: 788-800
  • 16 Cavalcanti AB, Suzumura EA, Laranjeira LN. et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs. low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 2017; 318: 1335-1345
  • 17 Talmor D, Sarge T, Malhotra A. et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 2008; 359: 2095-2104
  • 18 Chiumello D, Cressoni M, Carlesso E. et al. Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med 2014; 42: 252-264
  • 19 Amato MB, Meade MO, Slutsky AS. et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015; 372: 747-755
  • 20 Laffey JG, Bellani G, Pham T. et al. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med 2016; 42: 1865-1876
  • 21 Raymondos K, Dirks T, Quintel M. et al. Outcome of acute respiratory distress syndrome in university and non-university hospitals in Germany. Crit Care 2017; 21: 122
  • 22 Berngard SC, Beitler JR, Malhotra A. Personalizing mechanical ventilation for acute respiratory distress syndrome. J Thorac Dis 2016; 8: E172-E174
  • 23 Contreras M, Masterson C, Laffey JG. Permissive hypercapnia: what to remember. Curr Opin Anaesthesiol 2015; 28: 26-37
  • 24 Nin N, Muriel A, Penuelas O. et al. Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Med 2017; 43: 200-208
  • 25 Muthu V, Agarwal R, Sehgal IS. et al. ‘Permissive hypercapnia in ARDS: is it passé?. Intensive Care Med 2017; 43: 952-953
  • 26 Putensen C, Mutz NJ, Putensen-Himmer G. et al. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 1999; 159: 1241-1248
  • 27 Putensen C, Zech S, Wrigge H. et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 2001; 164: 43-49
  • 28 Saddy F, Oliveira GP, Garcia CS. et al. Assisted ventilation modes reduce the expression of lung inflammatory and fibrogenic mediators in a model of mild acute lung injury. Intensive Care Med 2010; 36: 1417-1426
  • 29 Spieth PM, Carvalho AR, Guldner A. et al. Pressure support improves oxygenation and lung protection compared to pressure-controlled ventilation and is further improved by random variation of pressure support. Crit Care Med 2011; 39: 746-755
  • 30 Papazian L, Forel JM, Gacouin A. et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010; 363: 1107-1116
  • 31 Yoshida T, Uchiyama A, Matsuura N. et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med 2012; 40: 1578-1585
  • 32 Yoshida T, Uchiyama A, Matsuura N. et al. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med 2013; 41: 536-545
  • 33 Carvalho NC, Guldner A, Beda A. et al. Higher levels of spontaneous breathing reduce lung injury in experimental moderate acute respiratory distress syndrome. Crit Care Med 2014; 42: e702-715
  • 34 Guldner A, Braune A, Carvalho N. et al. Higher levels of spontaneous breathing induce lung recruitment and reduce global stress/strain in experimental lung injury. Anesthesiology 2014; 120: 673-682
  • 35 Yoshida T, Torsani V, Gomes S. et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med 2013; 188: 1420-1427
  • 36 Doorduin J, Nollet JL, Roesthuis LH. et al. Partial neuromuscular blockade during partial ventilatory support in sedated patients with high tidal volumes. Am J Respir Crit Care Med 2017; 195: 1033-1042
  • 37 Yoshida T, Fujino Y, Amato MB. et al. Fifty years of research in ARDS. Spontaneous breathing during mechanical ventilation. risks, mechanisms, and management. Am J Respir Crit Care Med 2017; 195: 985-992
  • 38 Combes A, Pesenti A, Ranieri VM. Fifty years of research in ARDS. Is extracorporeal circulation the future of acute respiratory distress syndrome management?. Am J Respir Crit Care Med 2017; 195: 1161-1170
  • 39 Peek GJ, Mugford M, Tiruvoipati R. et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 2009; 374: 1351-1363
  • 40 Bein T, Weber-Carstens S, Goldmann A. et al. Lower tidal volume strategy (approximately 3 ml/kg) combined with extracorporeal CO2 removal versus ‘conventional protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med 2013; 39: 847-856
  • 41 Wiedemann HP, Wheeler AP, Bernard GR. et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006; 354: 2564-2575
  • 42 Martin GS, Mangialardi RJ, Wheeler AP. et al. Albumin and furosemide therapy in hypoproteinemic patients with acute lung injury. Crit Care Med 2002; 30: 2175-2182
  • 43 Mojtahedzadeh M, Vazin A, Najafi A. et al. The effect of furosemide infusion on serum epidermal growth factor concentration after acute lung injury. J Infus Nurs 2005; 28: 188-193
  • 44 Narendra DK, Hess DR, Sessler CN. et al. Update in management of severe hypoxemic respiratory failure. Chest 2017; 152: 867-879
  • 45 Scholten EL, Beitler JR, Prisk GK. et al. Treatment of ARDS with prone positioning. Chest 2017; 151: 215-224
  • 46 Gattinoni L, Pesenti A, Carlesso E. Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure: impact and clinical fallout through the following 20 years. Intensive Care Med 2013; 39: 1909-1915
  • 47 Sud S, Friedrich JO, Taccone P. et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med 2010; 36: 585-599
  • 48 Taccone P, Pesenti A, Latini R. et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA 2009; 302: 1977-1984
  • 49 Guerin C, Reignier J, Richard JC. et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013; 368: 2159-2168
  • 50 Staudinger T, Bojic A, Holzinger U. et al. Continuous lateral rotation therapy to prevent ventilator-associated pneumonia. Crit Care Med 2010; 38: 486-490
  • 51 Ahrens T, Kollef M, Stewart J. et al. Effect of kinetic therapy on pulmonary complications. Am J Crit Care 2004; 13: 376-383
  • 52 Bein T, Reber A, Metz C. et al. Acute effects of continuous rotational therapy on ventilation-perfusion inequality in lung injury. Intensive Care Med 1998; 24: 132-137
  • 53 Bein T, Zimmermann M, Schiewe-Langgartner F. et al. Continuous lateral rotational therapy and systemic inflammatory response in posttraumatic acute lung injury: results from a prospective randomised study. Injury 2012; 43: 1892-1897
  • 54 Annane D, Sebille V, Bellissant E. Effect of low doses of corticosteroids in septic shock patients with or without early acute respiratory distress syndrome. Crit Care Med 2006; 34: 22-30
  • 55 Bernard GR, Luce JM, Sprung CL. et al. High-dose corticosteroids in patients with the adult respiratory distress syndrome. N Engl J Med 1987; 317: 1565-1570
  • 56 Meduri GU, Golden E, Freire AX. et al. Methylprednisolone infusion in early severe ARDS: results of a randomized controlled trial. Chest 2007; 131: 954-963
  • 57 Steinberg KP, Hudson LD, Goodman RB. et al. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med 2006; 354: 1671-1684
  • 58 Takaki M, Ichikado K, Kawamura K. et al. The negative effect of initial high-dose methylprednisolone and tapering regimen for acute respiratory distress syndrome: a retrospective propensity matched cohort study. Crit Care 2017; 21: 135
  • 59 Briegel J, Bein T, Mohnle P. Update on low-dose corticosteroids. Curr Opin Anaesthesiol 2017; 30: 186-191
  • 60 Ruan SY, Lin HH, Huang CT. et al. Exploring the heterogeneity of effects of corticosteroids on acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care 2014; 18: R63
  • 61 Craig TR, Duffy MJ, Shyamsundar M. et al. A randomized clinical trial of hydroxymethylglutaryl-coenzyme a reductase inhibition for acute lung injury (The HARP Study). Am J Respir Crit Care Med 2011; 183: 620-626
  • 62 Truwit JD, Bernard GR, Steingrub J. et al. Rosuvastatin for sepsis-associated acute respiratory distress syndrome. N Engl J Med 2014; 370: 2191-2200
  • 63 Xiong B, Wang C, Tan J. et al. Statins for the prevention and treatment of acute lung injury and acute respiratory distress syndrome: A systematic review and meta-analysis. Respirology 2016; 21: 1026-1033
  • 64 Gao Smith F, Perkins GD, Gates S. et al. Effect of intravenous beta-2 agonist treatment on clinical outcomes in acute respiratory distress syndrome (BALTI-2): a multicentre, randomised controlled trial. Lancet 2012; 379: 229-235
  • 65 Matthay MA, Brower RG, Carson S. et al. Randomized, placebo-controlled clinical trial of an aerosolized beta(2)-agonist for treatment of acute lung injury. Am J Respir Crit Care Med 2011; 184: 561-568
  • 66 Adhikari NK, Dellinger RP, Lundin S. et al. Inhaled nitric oxide does not reduce mortality in patients with acute respiratory distress syndrome regardless of severity: systematic review and meta-analysis. Crit Care Med 2014; 42: 404-412
  • 67 Ruan SY, Huang TM, Wu HY. et al. Inhaled nitric oxide therapy and risk of renal dysfunction: a systematic review and meta-analysis of randomized trials. Crit Care 2015; 19: 137
  • 68 Bogdan C. Nitric oxide and the immune response. Nat Immunol 2001; 2: 907-916
  • 69 Kallet RH, Burns G, Zhuo H. et al. Severity of hypoxemia and other factors that influence the response to aerosolized prostacyclin in ARDS. Respir Care 2017; 62: 1014-1022
  • 70 Cheung AM, Tansey CM, Tomlinson G. et al. Two-year outcomes, health care use, and costs of survivors of acute respiratory distress syndrome. Am J Respir Crit Care Med 2006; 174: 538-544
  • 71 Oeyen SG, Vandijck DM, Benoit DD. et al. Quality of life after intensive care: a systematic review of the literature. Crit Care Med 2010; 38: 2386-2400
  • 72 Heyland DK, Groll D, Caeser M. Survivors of acute respiratory distress syndrome: relationship between pulmonary dysfunction and long-term health-related quality of life. Crit Care Med 2005; 33: 1549-1556
  • 73 Herridge MS, Moss M, Hough CL. et al. Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers. Intensive Care Med 2016; 42: 725-738
  • 74 Hill AD, Fowler RA, Pinto R. et al. Long-term outcomes and healthcare utilization following critical illness – a population-based study. Crit Care 2016; 20: 76
  • 75 Kamdar BB, Huang M, Dinglas VD. et al. Joblessness and lost earnings after ARDS in a 1-year national multicenter study. Am J Respir Crit Care Med 2017; 196: 1012-1020