Ultraschall Med 2018; 39(02): 181-189
DOI: 10.1055/s-0043-123469
Review
© Georg Thieme Verlag KG Stuttgart · New York

Cognitive Functions of the Fetus

Kognitive Funktionen beim Feten
Aida Salihagic Kadic
1   Department of Physiology, Medical School University of Zagreb, Croatia
,
Asim Kurjak
2   Department of Obstetrics and Gynecology, University Hospital Sveti Duh, Zagreb, Croatia
› Institutsangaben
Weitere Informationen

Publikationsverlauf

03. Juli 2017

15. November 2017

Publikationsdatum:
05. April 2018 (online)

Abstract

The human brain is intricately designed to execute cognitive functions, such as perception, attention, action, memory and learning. The complete nervous system is active during prenatal development and the aim of this review is to present data on fetal cognitive functions. The fetus processes sensory stimuli at a cortical level, including painful stimulus, from about 25 weeks of gestation onwards. At gestational week 34, the fetus is able not only to perceive complex acoustic external sounds but also to discriminate between different sounds. Fetal action planning is established by 22 weeks and investigations using four-dimensional ultrasound reveal that complexity of fetal motor action and behavior increases as pregnancy progresses. The capacity of the fetus to learn and memory are prodigious. At term, subcortical structures of the brain are well developed. There is high activity in primary cortical areas and low activity in association areas. Clinically relevant data on cognitive functions of the fetus could be important for the management of fetal pain and treatment of preterm infants as well as for improved neurodevelopmental outcome of fetuses from high-risk pregnancies. Finally, the brain’s developmental journey, including development of cognitive functions, continues with the same intensity in the postnatal period.

Zusammenfassung

Das menschliche Gehirn ist kompliziert gestaltet, um kognitive Funktionen, wie Wahrnehmung, Aufmerksamkeit, Handlungen, Gedächtnis und Lernen auszuführen. Das gesamte Nervensystem ist während der vorgeburtlichen Entwicklung aktiv. Ziel dieser Übersichtsarbeit ist es, die Datenlage bezüglich der kognitiven Funktionen des Feten darzustellen. Der Fetus verarbeitet etwa ab 25 Schwangerschaftswochen sensorische Reize, einschließlich schmerzhafter Stimuli, auf kortikaler Ebene. Mit 34 Schwangerschaftswochen kann der Fetus nicht nur komplexe akustische Außengeräusche wahrnehmen sondern auch zwischen verschiedenen Lauten unterscheiden. Der Fetus tritt ab 22 Wochen vermehrt in Aktion, und Untersuchungen mit vierdimensionalem Ultraschall zeigen, dass die Komplexität der fetalen Bewegungen und des Verhaltens im Verlauf der Schwangerschaft zunimmt. Die Lern- und Gedächtnisleistungen des Fetus sind erstaunlich. Um den Geburtstermin sind die subkortikalen Gehirnstrukturen gut entwickelt, es besteht eine hohe Aktivität in den primären Kortexarealen und eine geringe Aktivität in den Assoziationsarealen. Klinisch relevante Daten über kognitive Funktionen des Feten sind unter Umständen von Bedeutung bei der Behandlung fetaler Schmerzen, bei der Versorgung von Frühgeborenen, aber auch, um bei Risikoschwangerschaften die weitere neurologische Entwicklung des Feten zu verbessern. Schließlich geht die Entwicklung des Gehirns, einschließlich der kognitiven Funktionen, in der Zeit nach der Geburt genauso rasant weiter wie davor.

 
  • References

  • 1 Salihagić Kadić A, Predojević M. Fetal neurophysiology according to gestational age. Semin Fetal Neonatal Med 2012; 17 (05) 256-260
  • 2 Kandel ER. From Nerve Cells to Cognition: The Internal Representations of Space and Action. In: Kandel ER, Schwartz JH, Jessell TM. Siegelbaum SA. et al. (eds.) Principles of Neural Science. New York: McGraw-Hill; 2013: 370-391
  • 3 Kurjak A, Barisic LS, Stanojevic M. et al. Are We Ready to investigate Cognitive Function of Fetal Brain? The Role of Advanced Four-dimensional Sonography. Donald School Journal of Ultrasound in Obstetrics and Gynecology 2016; 10: 116-124
  • 4 Olson CR, Colby CL. Organization of Cognition. In: Kandel ER, Schwartz JH, Jessell TM. Siegelbaum SA. et al. (eds.) Principles of Neural Science. New York: McGraw-Hill; 2013: 392-411
  • 5 Nelson CA. Neural development and lifelong plasticity. In: Keating DP. (ed.) Nature and Nurture in Early Child Development. Cambridge: Cambridge University Press; 2011: 45-69
  • 6 Anderson AL, Thomason ME. Functional plasticity before the cradle: A review of neural functional imaging in the human fetus. Neuroscience and Biobehavioral Reviews 2013; 37: 2220-2232
  • 7 Kostovic I, Judas M, Petanjek Z. et al. Ontogenesis of goal-directed behavior: anatomo-functional considerations. Int J Psychophysiol 1995; 19: 85-102
  • 8 Kostovic I, Judas M, Rados M. et al. Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb Cortex 2002; 12: 536-44
  • 9 Tau GZ, Peterson BS. Normal Development of Brain Circuits. Neuropsychopharmacology 2010; 35 (01) 147-168
  • 10 Qiu A, Mori S, Miller MI. Diffusion Tensor Imaging for Understanding Brain Development in Early Life. Annu Rev Psychol 2015; 66: 853-876
  • 11 Kostović I, Judas M. The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatr 2010; 99 (08) 1119-1127
  • 12 Klimach VJ, Cooke RW. Maturation of the neonatal somatosensory evoked response in preterm infants. Dev Med Child Neurol 1988; 30: 208-214
  • 13 Lagercrantz H. The emergence of consciousness: Science and ethics. Seminars in Fetal & Neonatal Medicine 2014; 19: 300-305
  • 14 Pashaj S, Merz E, Wellek S. Biometry of the fetal corpus callosum by three-dimensional ultrasound. Ultrasound Obstet Gynecol 2013; 42 (06) 691-698
  • 15 Pashaj S, Merz E. Detection of Fetal Corpus Callosum Abnormalities by Means of 3D Ultrasound. Ultraschall in Med 2016; 37 (02) 185-194
  • 16 Kolb B, Mychasiuk R, Gibb R. Brain development, experience, and behavior. Pediatr Blood Cancer 2014; 61 (10) 1720-1723
  • 17 Lagercrantz H. The emergence of the mind – a borderline of human viability?. Acta Pediatrica 2007; 96 (03) 327-328
  • 18 Lee SJ, Ralston HJ, Drey EA. et al. Fetal pain: a systematic multidisciplinary review of the evidence. JAMA 2005; 294: 947-954
  • 19 Mennella JA, Jagnow CP, Beauchamp GK. Prenatal and postnatal flavor learning by human infants. Pediatrics 2001; 107: E88
  • 20 Joseph R. Fetal brain and cognitive development. Dev Rev 1999; 20: 81-98
  • 21 Kisilevsky BS, Hains SMJ, Jacquet AY. et al. Maturation of fetal responses to music. Developmental Science 2004; 7 (05) 550-559
  • 22 Eswaran H, Wilson JD, Preissl H. et al. Magnetoencephalographic recordings of visual evoked brain activity in the human fetus. Lancet 2002; 360: 779-780
  • 23 Hevner RF. Development of connections in the human visual system during fetal mid-gestation: a DiI-tracing study. J Neuropathol Exp Neurol 2000; 59: 385-392
  • 24 Salihagic Kadic A, Predojevic M, Kurjak A. Advances in Fetal Neurophysology. In: Pooh RK, Kurjak A. (eds.) Fetal Neurology. New Delhi: Jaypee Brothers; 2009: 161-221
  • 25 Kurjak A, Andonotopo W, Hafner T. et al. Normal standards for fetal neurobehavioral developments—longitudinal quantification by four-dimensional sonography. J Perinat Med 2006; 34 (01) 56-65
  • 26 Andonotopo W, Medic M, Salihagic-Kadic A. et al. The assessment of fetal behavior in early pregnancy: comparison between 2D and 4D sonographic scanning. J Perinat Med 2005; 33 (05) 406-414
  • 27 Kurjak A, Azumendi G, Vecek N. et al. Fetal hand movements and facial expression in normal pregnancy studied by fourdimensional sonography. J Perinat Med 2003; 31 (06) 496-508
  • 28 Zoia S, Blason L, D’Ottavio G. et al. Evidence of early development of action planning in the human foetus: a kinematic study. Exp Brain Res 2007; 176 (02) 217-226
  • 29 Scott RR. Yoke Motor Learning in the Fetal Rat: A Model System for Prenatal Behavioral Development. In: Reissland N, Kisilevsky BS. (eds.) Fetal Development Research on Brain and Behavior, Environmental Influences, and Emerging Technologies. Heidelberg, New York, Dordrecht, London: Springer International Publishing Switzerland; 2016: 43-67
  • 30 Kurjak A, Miskovic B, Stanojevic M. et al. New scoring system for fetal neurobehavior assessed by three- and four-dimensional sonography. J Perinat Med 2008; 36 (01) 73-81
  • 31 Salihagić Kadić A, Stanojević M, Predojević M. et al. Assessment of the Fetal Neuromotor Development with the New KANET Test. In: Reissland N, Kisilevsky BS. (eds.) Fetal Development Research on Brain and Behavior, Environmental Influences, and Emerging Technologies. Heidelberg, New York, Dordrecht, London: Springer International Publishing Switzerland; 2016: 177-189
  • 32 Predojević M, Talić A, Stanojević M. et al. Assessment of motoric and hemodynamic parameters in growth restricted fetuses – case study. J Matern Fetal Neonatal Med 2014; 27: 247-251
  • 33 Kurjak A, Azumendi G, Andonopo W. et al. Three- and four-dimensional ultrasonography for the structural and functional evaluation of the fetal face. Am J Obstet Gynecol 2007; 196 (01) 16-28
  • 34 Reissland N, Francis B, Mason J. et al. Do facial expressions develop before birth?. PLoS One 2011; 6 (08) e24081 doi: 10.1371 /journal.pone. 0024081
  • 35 Reissland N, Francis B, Mason J. Can healthy fetuses show facial expressions of “pain” or “distress”?. PLoS One 2013; 8 (06) e65530 doi: 10.1371/ journal.pone. 0065530
  • 36 Merz E. Fetal Facial Expressions: Demonstration of the Smiling, the Sad and the Scowling Fetus with 4D-Ultrasound. Ultraschall in Med 2015; 36 (01) 1-2
  • 37 Hata T, Kanenishi K, AboEllail MAM. et al. Fetal Consciousness: Four-dimensional Ultrasound Study. Donald School Journal of Ultrasound in Obstetrics and Gynecology 2015; 9 (04) 471-474
  • 38 Delafield-Butt JT, Trevarthen C. Theories of the development of human communication. Theories and Models of Communication. In: Cobley P, Schultz PJ. (eds.) Handbook of Communication Science. Berlin: De Gruyter Mouton; 2013. Vol. 1. 199-221
  • 39 Joseph R. Environmental Influences on Neural Plasticity, the Limbic System, Emotional Development and Attachment: A Review. Child Psychiatry and Human Development 1999; 29 (03) 189-208
  • 40 Humphrey T. The development of the human amygdala during early embryonic life. Journal of Comparative Neurology 1968; 132 (01) 135-165
  • 41 Leader LR, Baille P, Martin B. et al. The assessment and significance of habituation to a repeated stimulus by the human fetus. Early Human Dev 1982; 7 (03) 211-219
  • 42 Morokuma S, Fukushima K, Kawai N. et al. Fetal habituation correlates with functional brain development. Behav Brain Res 2004; 153 (02) 459-463
  • 43 Yamaguchi S, Hale LA, D’Esposito M. et al. Rapid prefrontal-hippocampal habituation to novel events. J Neurosci 2004; 24 (23) 5356-5363
  • 44 Hepper P. Memory in utero?. Dev Med Child Neurol 1997; 39 (05) 343-346
  • 45 Kawai N, Morokuma S, Tomonaga M. et al. Associative learning and memory in a chimpanzee fetus: Learning and long-lasting memory before birth. Dev Psychobiol 2004; 44 (02) 116-122
  • 46 De Casper AJ, Spence MJ. Prenatal maternal speech influences newborn’s perception of speech sound. Inf Behav Dev 1986; 9: 133-150
  • 47 Hepper P, Scott D, Shahidullah S. Newborn and fetal response to maternal voice. J Reprod Infant Psychol 1993; 11: 147-153
  • 48 Jardri R, Houfflin-Debarge V, Delion P. et al. Assessing fetal response to maternal speech using a noninvasive functional brain imaging technique. Int J Dev Neurosci 2012; 30 (02) 159-161
  • 49 Hepper PG. Foetal “soup” addiction. Lancet 1988; 1: 1347-1348
  • 50 Granier-Deferre C, Bassereau S, Ribeiro A. et al. A melodic contour repeatedly experienced by human near-term fetuses elicits a profound cardiac reaction one month after birth. PLoS One 2011; 6 (02) e17304 doi: 10.1371/journal.pone. 0017304
  • 51 Webb AR, Heller HT, Benson CB. et al. Mother’s voice and heartbeat sounds elicit auditory plasticity in the human brain before full gestation. Proc Natl Acad Sci U S A 2015; 112 (10) 3152-3157
  • 52 Trevarthen C, Delafield-Butt JT. Autism as a developmental disorder in intentional movement and affective engagement. Front Integr Neurosci 2013; 7: 49-73
  • 53 Anand KJS, Hickey PR. Pain and its effects in the human neonate and fetus. N Engl J Med 1987; 317: 1321-1329