Planta Med 2018; 84(01): 8-19
DOI: 10.1055/s-0043-123472
Reviews
Georg Thieme Verlag KG Stuttgart · New York

New Pharmacological Opportunities for Betulinic Acid

José Luis Ríos
Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
,
Salvador Máñez
Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
› Author Affiliations
Further Information

Publication History

received 15 September 2017
revised 07 November 2017

accepted 13 November 2017

Publication Date:
04 December 2017 (online)

Abstract

Betulinic acid is a naturally occurring pentacyclic lupane-type triterpenoid usually isolated from birch trees, but present in many other botanical sources. It is found in different plant organs, both as a free aglycon and as glycosyl derivatives. A wide range of pharmacological activities has been described for this triterpenoid, including antiviral and antitumor effects. In addition, several other interesting properties have been identified in the fields of immunity and metabolism, namely antidiabetic, antihyperlipidemic, and anti-inflammatory activities. Taken together, these latter three properties make betulinic acid a highly interesting prospect for treating metabolic syndrome. The present review focuses on the therapeutic potential of this agent, along with several of its semisynthetic derivatives, which could open new frontiers in the use of natural product-based medicines.

 
  • References

  • 1 Moghaddam MG, Ahmad JBH, Samzadeh-Kermani A. Biological activity of betulinic acid: a review. Phamacol Pharm 2012; 3: 119-123
  • 2 Recio MC, Giner RM, Máñez S, Gueho J, Julien HR, Hostettmann K, Ríos JL. Investigations on the steroidal anti-inflammatory activity of triterpenoids from Diospyros leucomelas . Planta Med 1995; 61: 9-12
  • 3 Aiken C, Chen CH. Betulinic acid derivatives as HIV-1 antivirals. Trends Mol Med 2005; 11: 31-36
  • 4 Rajendran P, Jaggi M, Singh MK, Mukherjee R, Burman AC. Pharmacological evaluation of C-3 modified betulinic acid derivatives with potent anticancer activity. Invest New Drugs 2008; 26: 25-34
  • 5 Zhang X, Hu J, Chen Y. Betulinic acid and the pharmacological effects of tumor suppression (Review). Mol Med Rep 2016; 14: 4489-4495
  • 6 Zhang DM, Xu HG, Wang L, Li YJ, Sun PH, Wu XM, Wang GJ, Chen WM, Ye WC. Betulinic acid and its derivatives as potential antitumor agents. Med Res Rev 2015; 35: 1127-1155
  • 7 Gheorgheosu D, Duicu O, Dehelean C, Soica C, Muntean D. Betulinic acid as a potent and complex antitumor phytochemical: a minireview. Anticancer Agents Med Chem 2014; 14: 936-945
  • 8 Jonnalagadda SC, Corsello MA, Sleet CE. Betulin-betulinic acid natural product based analogs as anti-cancer agents. Anticancer Agents Med Chem 2013; 13: 1477-1499
  • 9 Silva FS, Oliveira PJ, Duarte MF. Oleanolic, ursolic, and betulinic acids as food supplements or pharmaceutical agents for type 2 diabetes: promise or illusion?. J Agric Food Chem 2016; 64: 2991-3008
  • 10 Kim J, Lee YS, Kim CS, Kim JS. Betulinic acid has an inhibitory effect on pancreatic lipase and induces adipocyte lipolysis. Phytother Res 2012; 26: 1103-1106
  • 11 Gautam R, Jachak SM. Recent developments in anti-inflammatory natural products. Med Res Rev 2009; 29: 767-820
  • 12 Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract 2014; 2014: 943162
  • 13 OʼNeill S, OʼDriscoll L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev 2015; 16: 1-12
  • 14 Kumar S, Kumar V, Prakash O. Enzymes inhibition and antidiabetic effect of isolated constituents from Dillenia indica . Biomed Res Int 2013; 2013: 382063
  • 15 de Melo CL, Queiroz MG, Arruda Filho AC, Rodrigues AM, de Sousa DF, Almeida JG, Pessoa OD, Silveira ER, Menezes DB, Melo TS, Santos FA, Rao VS. Betulinic acid, a natural pentacyclic triterpenoid, prevents abdominal fat accumulation in mice fed a high-fat diet. J Agric Food Chem 2009; 57: 8776-8781
  • 16 He QQ, Yang L, Zhang JY, Ma JN, Ma CM. Chemical constituents of gold-red apple and their α-glucosidase inhibitory activities. J Food Sci 2014; 79: C1970-C1983
  • 17 Castro AJ, Frederico MJ, Cazarolli LH, Bretanha LC, Tavares LC, Buss ZS, Dutra MF, de Souza AZ, Pizzolatti MG, Silva FR. Betulinic acid and 1,25(OH)2 vitamin D3 share intracellular signal transduction in glucose homeostasis in soleus muscle. Int J Biochem Cell Biol 2014; 48: 18-27
  • 18 Wen X, Sun H, Liu J, Cheng K, Zhang P, Zhang L, Hao J, Zhang L, Ni P, Zographos SE, Leonidas DD, Alexacou KM, Gimisis T, Hayes JM, Oikonomakos NG. Naturally occurring pentacyclic triterpenes as inhibitors of glycogen phosphorylase: synthesis, structure-activity relationships, and X-ray crystallographic studies. J Med Chem 2008; 51: 3540-3554
  • 19 Ha DT, Tuan DT, Thu NB, Nhiem NX, Ngoc TM, Yim N, Bae K. Palbinone and triterpenes from Moutan Cortex (Paeonia suffruticosa, Paeoniaceae) stimulate glucose uptake and glycogen synthesis via activation of AMPK in insulin-resistant human HepG2 cells. Bioorg Med Chem Lett 2009; 19: 5556-5559
  • 20 Kim SJ, Quan HY, Jeong KJ, Kim DY, Kim G, Jo HK, Chung SHJ. Beneficial effect of betulinic acid on hyperglycemia via suppression of hepatic glucose production. J Agric Food Chem 2014; 62: 434-442
  • 21 Heiss EH, Kramer MP, Atanasov AG, Beres H, Schachner D, Dirsch VM. Glycolytic switch in response to betulinic acid in non-cancer cells. PLoS One 2014; 9: e115683
  • 22 Choi JY, Na M, Hwang IH, Lee SH, Bae EY, Yeon BK, Ahn JS. Isolation of betulinic acid, its methyl ester and guaiane sesquiterpenoids with protein tyrosine phosphatase 1B inhibitory activity from the roots of Saussurea lappa C.B. Clarke. Molecules 2009; 14: 266-272
  • 23 Li D, Li W, Higai K, Koike K. Protein tyrosine phosphatase 1B inhibitory activities of ursane- and lupane-type triterpenes from Sorbus pohuashanensis . J Nat Med 2014; 68: 427-431
  • 24 Trauner M, Claudel T, Fickert P, Moustafa T, Wagner M. Bile acids as regulators of hepatic lipid and glucose metabolism. Dig Dis 2010; 28: 220-224
  • 25 Genet C, Strehle A, Schmidt C, Boudjelal G, Lobstein A, Schoonjans K, Souchet M, Auwerx J, Saladin R, Wagner A. Structure-activity relationship study of betulinic acid, a novel and selective TGR5 agonist, and its synthetic derivatives: potential impact in diabetes. J Med Chem 2010; 53: 178-190
  • 26 Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5: a valuable metabolic target. Dig Dis 2011; 29: 37-44
  • 27 Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, Pellicciari R, Auwerx J, Schoonjans K. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metabol 2009; 10: 167-177
  • 28 Jang DS, Lee GY, Kim J, Lee YM, Kim JM, Kim YS, Kim JS. A new pancreatic lipase inhibitor isolated from the roots of Actinidia arguta . Arch Pharm Res 2008; 31: 666-670
  • 29 Lee WS, Im KR, Park YD, Sung ND, Jeong TS. Human ACAT-1 and ACAT-2 inhibitory activities of pentacyclic triterpenes from the leaves of Lycopus lucidus Turcz. Biol Pharm Bull 2006; 29: 382-384
  • 30 Quan HY, Kim DY, Kim SJ, Jo HK, Kim GW, Chung SH. Betulinic acid alleviates non-alcoholic fatty liver by inhibiting SREBP1 activity via the AMPK-mTOR-SREBP signaling pathway. Biochem Pharmacol 2013; 85: 1330-1340
  • 31 Ríos JL, Francini F, Schinella GR. Natural products for the treatment of type 2 diabetes mellitus. Planta Med 2015; 81: 975-994
  • 32 Cho Y, Hazen BC, Russell AP, Kralli A. Peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1)- and estrogen-related receptor (ERR)-induced regulator in muscle 1 (Perm1) is a tissue-specific regulator of oxidative capacity in skeletal muscle cells. J Biol Chem 2013; 288: 25207-25218
  • 33 Chung MY, Rho MC, Lee SW, Park HR, Kim K, Lee IA, Kim DH, Jeune KH, Lee HS, Kim YK. Inhibition of diacylglycerol acyltransferase by betulinic acid from Alnus hirsuta . Planta Med 2006; 72: 267-269
  • 34 Huguet A, Recio MC, Máñez S, Giner R, Ríos JL. Effect of triterpenoids on the inflammation induced by protein kinase C activators, neuronally acting irritants and other agents. Eur J Pharmacol 2000; 410: 69-81
  • 35 Wang BH, Polya GM. Selective inhibition of cyclic AMP-dependent protein kinase by amphiphilic triterpenoids and related compounds. Phytochemistry 1996; 41: 55-63
  • 36 Bernard P, Scior T, Didier B, Hibert M, Berthon JY. Ethnopharmacology and bioinformatic combination for leads discovery: application to phospholipase A2 inhibitors. Phytochemistry 2001; 58: 865-874
  • 37 Cichewicz RH, Kouzi SA. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med Res Rev 2004; 24: 90-114
  • 38 Takada Y, Aggarwal BB. Betulinic acid suppresses carcinogen-induced NF-κB activation through inhibition of IκBα kinase and p65 phosphorylation: abrogation of cyclooxygenase-2 and matrix metalloprotease-9. J Immunol 2003; 171: 3278-3286
  • 39 Su BN, Cuendet M, Farnsworth NR, Fong HHS, Pezzuto JM, Kinghorn AD. Activity-guided fractionation of the seeds of Ziziphus jujuba using a cyclooxygenase-2 inhibitor assay. Planta Med 2002; 68: 1125-1128
  • 40 Ryu SY, Oak MH, Yoon SK, Cho DI, Yoo GS, Kim TS, Kim KM. Anti-allergic and anti-inflammatory triterpenes from the herb of Prunella vulgaris . Planta Med 2000; 66: 358-360
  • 41 Jain MK, Yu BZ, Rogers JM, Smith AE, Boger ET, Ostrander RL, Rheingold AL. Specific competitive inhibitor of secreted phospholipase A2 from berries of Schinus terebinthifolius . Phytochemistry 1995; 39: 537-547
  • 42 Giner-Larza EM, Máñez S, Giner RM, Recio MC, Prieto JM, Cerdá-Nicolás M, Ríos JL. Anti-inflammatory triterpenes from Pistacia terebinthus galls. Planta Med 2002; 68: 311-315
  • 43 Yueqin Z, Recio MC, Máñez S, Giner RM, Cerdá-Nicolás M, Ríos JL. Isolation of two triterpenoids and a biflavanone with anti-Inflammatory activity from Schinus molle fruits. Planta Med 2003; 69: 893-898
  • 44 Yoon JJ, Lee YJ, Kim JS, Kang DG, Lee HS. Protective role of betulinic acid on TNF-α-induced cell adhesion molecules in vascular endothelial cells. Biochem Biophys Res Commun 2010; 391: 96-101
  • 45 Zhao GJ, Tang SL, Lv YC, Ouyang XP, He PP, Yao F, Chen WJ, Lu Q, Tang YY, Zhang M, Fu Y, Zhang DW, Yin K, Tang CK. Antagonism of betulinic acid on LPS-mediated inhibition of ABCA1 and cholesterol efflux through inhibiting nuclear factor-kappaB signaling pathway and miR-33 expression. PLoS One 2013; 8: e74782
  • 46 Jin T, Yu H, Huang XF. Selective binding modes and allosteric inhibitory effects of lupane triterpenes on protein tyrosine phosphatase 1B. Sci Rep 2016; 6: 20766
  • 47 Kim HI, Quan FS, Kim JE, Lee NR, Kim HJ, Jo SJ, Lee CM, Jang DS, Inn KS. Inhibition of estrogen signaling through depletion of estrogen receptor alpha by ursolic acid and betulinic acid from Prunella vulgaris var. lilacina . Biochem Biophys Res Commun 2014; 451: 282-287
  • 48 Tzenov YR, Andrews P, Voisey K, Gai L, Carter B, Whelan K, Popadiuk C, Kao KR. Selective estrogen receptor modulators and betulinic acid act synergistically to target ERα and SP1 transcription factor dependent Pygopus expression in breast cancer. J Clin Pathol 2016; 69: 518-526
  • 49 Hohmann N, Xia N, Steinkamp-Fenske K, Förstermann U, Li H. Estrogen receptor xignaling and the PI3K/Akt pathway are involved in betulinic acid-induced eNOS activation. Molecules 2016; 21: E973
  • 50 Yogeeswari P, Sriram D. Betulinic acid and its derivatives: a review on their biological properties. Curr Med Chem 2005; 12: 657-666
  • 51 Swidorski JJ, Liu Z, Sit SY, Chen J, Chen Y, Sin N, Venables BL, Parker DD, Nowicka-Sans B, Terry BJ, Protack T, Rahematpura S, Hanumegowda U, Jenkins S, Krystal M, Dicker IB, Meanwell NA, Regueiro-Ren A. Inhibitors of HIV-1 maturation: Development of structure-activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids. Bioorg Med Chem Lett 2016; 26: 1925-1930
  • 52 Liu Z, Swidorski JJ, Nowicka-Sans B, Terry B, Protack T, Lin Z, Samanta H, Zhang S, Li Z, Parker DD, Rahematpura S, Jenkins S, Beno BR, Krystal M, Meanwell NA, Dicker IB, Regueiro-Ren A. C-3 benzoic acid derivatives of C-3 deoxybetulinic acid and deoxybetulin as HIV-1 maturation inhibitors. Bioorg Med Chem 2016; 24: 1757-1770
  • 53 Kashiwada Y, Hashimoto F, Cosentino LM, Chen CH, Garrett PE, Lee KH. Betulinic acid and dihydrobetulinic acid derivatives as potent anti-HIV agents. J Med Chem 1996; 39: 1016-1017
  • 54 Urano E, Ablan SD, Mandt R, Pauly GT, Sigano DM, Schneider JP, Martin DE, Nitz TJ, Wild CT, Freed EO. Alkyl amine bevirimat derivatives are potent and broadly active HIV-1 maturation inhibitors. Antimicrob Agents Chemother 2015; 60: 190-197
  • 55 Li J, Goto M, Yang X, Morris-Natschke SL, Huang L, Chen CH, Lee KH. Fluorinated betulinic acid derivatives and evaluation of their anti-HIV activity. Bioorg Med Chem Lett 2016; 26: 68-71
  • 56 Heidary Navid M, Laszczyk-Lauer MN, Reichling J, Schnitzler P. Pentacyclic triterpenes in birch bark extract inhibit early step of herpes simplex virus type 1 replication. Phytomedicine 2014; 21: 1273-1280
  • 57 Visalli RJ, Ziobrowski H, Badri KR, He JJ, Zhang X, Arumugam SR, Zhao H. Ionic derivatives of betulinic acid exhibit antiviral activity against herpes simplex virus type-2 (HSV-2), but not HIV-1 reverse transcriptase. Bioorg Med Chem Lett 2015; 25: 3168-3171
  • 58 Li Y, Jiang R, Ooi LS, But PP, Ooi VE. Antiviral triterpenoids from the medicinal plant Schefflera heptaphylla . Phytother Res 2007; 21: 466-470
  • 59 Hong EH, Song JH, Kang KB, Sung SH, Ko HJ, Yang H. Anti-influenza activity of betulinic acid from Zizyphus jujuba on influenza A/PR/8 virus. Biomol Ther (Seoul) 2015; 23: 345-349
  • 60 Wang H, Xu R, Shi Y, Si L, Jiao P, Fan Z, Han X, Wu X, Zhou X, Yu F, Zhang Y, Zhang L, Zhang L, Zhou D, Xiao S. Design, synthesis and biological evaluation of novel L-ascorbic acid-conjugated pentacyclic triterpene derivatives as potential influenza virus entry inhibitors. Eur J Med Chem 2016; 110: 376-388
  • 61 Yao D, Li H, Gou Y, Zhang H, Vlessidis AG, Zhou H, Evmiridis NP, Liu Z. Betulinic acid-mediated inhibitory effect on hepatitis B virus by suppression of manganese superoxide dismutase expression. FEBS J 2009; 276: 2599-2614
  • 62 Ali-Seyed M, Jantan I, Vijayaraghavan K, Bukhari SN. Betulinic acid: recent advances in chemical modifications, effective delivery, and molecular mechanisms of a promising anticancer therapy. Chem Biol Drug Des 2016; 87: 517-536
  • 63 Dash SK, Chattopadhyay S, Dash SS, Tripathy S, Das B, Mahapatra SK, Bag BG, Karmakar P, Roy S. Self-assembled nano fibers of betulinic acid: A selective inducer for ROS/TNF-alpha pathway mediated leukemic cell death. Bioorg Chem 2015; 63: 85-100
  • 64 Wang YJ, Liu JB, Dou YC. Sequential treatment with betulinic acid followed by 5-fluorouracil shows synergistic cytotoxic activity in ovarian cancer cells. Int J Clin Exp Pathol 2015; 8: 252-259
  • 65 Karna E, Szoka L, Palka JA. Betulinic acid inhibits the expression of hypoxia-inducible factor 1 alpha and vascular endothelial growth factor in human endometrial adenocarcinoma cells. Mol Cell Biochem 2010; 340: 15-20
  • 66 Majeed R, Hamid A, Sangwan PL, Chinthakindi PK, Koul S, Rayees S, Singh G, Mondhe DM, Mintoo MJ, Singh SK, Rath SK, Saxena AK. Inhibition of phosphotidylinositol-3 kinase pathway by a novel naphthol derivative of betulinic acid induces cell cycle arrest and apoptosis in cancer cells of different origin. Cell Death Dis 2014; 5: e1459
  • 67 Majeed R, Hussain A, Sangwan PL, Chinthakindi PK, Khan I, Sharma PR, Koul S, Saxena AK, Hamid A. PI3K target based novel cyano derivative of betulinic acid induces its signaling inhibition by down-regulation of pGSK3β and cyclin D1 and potentially checks cancer cell proliferation. Mol Carcinog 2016; 55: 964-976
  • 68 Potze L, Mullauer FB, Colak S, Kessler JH, Medema JP. Betulinic acid-induced mitochondria-dependent cell death is counterbalanced by an autophagic salvage response. Cell Death Dis 2014; 5: e1169
  • 69 Khan I, Guru SK, Rath SK, Chinthakindi PK, Singh B, Koul S, Bhushan S, Sangwan PL. A novel triazole derivative of betulinic acid induces extrinsic and intrinsic apoptosis in human leukemia HL-60 cells. Eur J Med Chem 2016; 108: 104-116
  • 70 Borkova L, Jasikova L, Rehulka J, Frisonsova K, Urban M, Frydrych I, Popa I, Hajduch M, Dickinson NJ, Vlk M, Dzubak P, Sarek J. Synthesis of cytotoxic 2,2-difluoroderivatives of dihydrobetulinic acid and allobetulin and study of their impact on cancer cells. Eur J Med Chem 2015; 96: 482-490
  • 71 Bache M, Bernhardt S, Passin S, Wichmann H, Hein A, Zschornak M, Kappler M, Taubert H, Paschke R, Vordermark D. Betulinic acid derivatives NVX-207 and B10 for treatment of glioblastoma – an in vitro study of cytotoxicity and radiosensitization. Int J Mol Sci 2014; 15: 19777-19790
  • 72 Hsu TI, Chen YJ, Hung CY, Wang YC, Lin SJ, Su WC, Lai MD, Kim SY, Wang Q, Qian K, Goto M, Zhao Y, Kashiwada Y, Lee KH, Chang WC, Hung JJ. A novel derivative of betulinic acid, SYK023, suppresses lung cancer growth and malignancy. Oncotarget 2015; 6: 13671-13687
  • 73 Saha S, Ghosh M, Dutta SK. A potent tumoricidal co-drug ‘Bet-CA’ – an ester derivative of betulinic acid and dichloroacetate selectively and synergistically kills cancer cells. Sci Rep 2015; 5: 7762
  • 74 Sousa MC, Varandas R, Santos RC, Santos-Rosa M, Alves V, Salvador JA. Antileishmanial activity of semisynthetic lupane triterpenoids betulin and betulinic acid derivatives: synergistic effects with miltefosine. PLoS One 2014; 9: e89939
  • 75 Innocente AM, Vieira PB, Frasson AP, Casanova BB, Gosmann G, Gnoatto SC, Tasca T. Anti-Trichomonas vaginalis activity from triterpenoid derivatives. Parasitol Res 2014; 113: 2933-2940
  • 76 Innocente A, Casanova BB, Klein F, Lana AD, Pereira D, Muniz MN, Sonnet P, Gosmann G, Fuentefria AM, Gnoatto SC. Synthesis of isosteric triterpenoid derivatives and antifungal activity. Chem Biol Drug Des 2014; 83: 344-349
  • 77 Spivak AY, Keiser J, Vargas M, Gubaidullin RR, Nedopekina DA, Shakurova ER, Khalitova RR, Odinokov VN. Synthesis and activity of new triphenylphosphonium derivatives of betulin and betulinic acid against Schistosoma mansoni in vitro and in vivo . Bioorg Med Chem 2014; 22: 6297-6304
  • 78 Chung PY, Chung LY, Navaratnam P. Potential targets by pentacyclic triterpenoids from Callicarpa farinosa against methicillin-resistant and sensitive Staphylococcus aureus . Fitoterapia 2014; 94: 48-54
  • 79 Li H, Webster D, Johnson JA, Gray CA. Anti-mycobacterial triterpenes from the Canadian medicinal plant Alnus incana . J Ethnopharmacol 2015; 165: 148-151
  • 80 Lingaraju MC, Pathak NN, Begum J, Balaganur V, Ramachandra HD, Bhat RA, Ram M, Singh V, Kandasamy K, Kumar D, Kumar D, Tandan SK. Betulinic acid attenuates renal oxidative stress and inflammation in experimental model of murine polymicrobial sepsis. Eur J Pharm Sci 2015; 70: 12-21
  • 81 Udeani GO, Zhao GM, Geun Shin Y, Cooke BP, Graham J, Beecher CW, Kinghorn AD, Pezzuto JM. Pharmacokinetics and tissue distribution of betulinic acid in CD-1 mice. Biopharm Drug Dispos 1999; 20: 379-383
  • 82 Cheng X, Shin YG, Levine BS, Smith AC, Tomaszewski JE, van Breemen RB. Quantitative analysis of betulinic acid in mouse, rat and dog plasma using electrospray liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 2003; 17: 2089-2092
  • 83 Shin YG, Cho KH, Chung SM, Graham J, Gupta TKD, Pezzuto JM. Determination of betulinic acid in mouse blood, tumor, and tissue homogenates by liquid chromatography – electrospray mass spectrometry. J Chromatogr B 1999; 732: 331-336
  • 84 Godugu C, Patel AR, Doddapaneni R, Somagoni J, Singh M. Approaches to improve the oral bioavailability and effects of novel anticancer drugs berberine and betulinic acid. PLoS One 2014; 9: e89919
  • 85 Castor TP. Phospholipid nanosomes. Curr Drug Deliv 2005; 2: 329-340
  • 86 Honda T, Liby KT, Su X, Sundararajan C, Honda Y, Suh N, Risingsong R, Williams CR, Royce DB, Sporn MB, Gribble GW. Design, synthesis, and anti-inflammatory activity both in vitro and in vivo of new betulinic acid analogues having an enone functionality in ring A. Bioorg Med Chem Lett 2006; 16: 6306-6309
  • 87 Dang Z, Qian K, Ho P, Zhu L, Lee KH, Huang L, Chen CH. Synthesis of betulinic acid derivatives as entry inhibitors against HIV-1 and bevirimat-resistant HIV-1 variants. Bioorg Med Chem Lett 2012; 22: 5190-5194
  • 88 Zhao L, Li W, Li Y, Xu H, Lv L, Wang X, Chai Y, Zhang G. Simultaneous determination of oleanolic and ursolic acids in rat plasma by HPLC-MS: application to a pharmacokinetic study after oral administration of different combinations of QingGanSanJie decoction extracts. J Chromatogr Sci 2015; 53: 1185-1192
  • 89 Rada M, Castellano JM, Perona JS, Guinda Á. GC-FID determination and pharmacokinetic studies of oleanolic acid in human serum. Biomed Chromatogr 2015; 29: 1687-1692
  • 90 Csuk R. Betulinic acid and its derivatives: a patent review (2008–2013). Expert Opin Ther Pat 2014; 24: 913-923
  • 91 Zuco V, Supino R, Righetti SC, Cleris K, Marchesi E, Gambacorti-Passerini C, Formelli F. Selective cytotoxicity of betulinic acid on tumor cell lines, but not normal cells. Cancer Lett 2002; 175: 17-25
  • 92 Chou KJ, Fang HC, Chung HM, Cheng JS, Lee KC, Tseng LL, Tang KY, Jan CR. Effect of betulinic acid on intracellular-free Ca2+ levels in Madin Darby canine kidney cells. Eur J Pharmacol 2000; 408: 99-106
  • 93 Steele JCP, Warhurst DC, Kirby GC, Simmonds MSJ. In vitro and in vivo evaluation of betulinic acid as an antimalarial. Phytother Res 1999; 13: 115-119
  • 94 Karna E, Palka JA. Mechanism of betulinic acid inhibition of collagen biosynthesis in human endometrial adenocarcinoma cells. Neoplasma 2009; 56: 361-366