Fortschr Neurol Psychiatr 2019; 87(01): 39-45
DOI: 10.1055/s-0043-123826
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Pilotstudie: Mikrobiom und Darmbarriere bei Anorexia nervosa

Pilot study: Gut microbiome and intestinal barrier in anorexia nervosa
Sabrina Mörkl
1   LKH Universitätsklinikum Graz, Universitätsklinik für Psychiatrie und psychotherapeutische Medizin
,
Sonja Lackner
2   Medizinische Universität Graz, Otto Loewi Forschungszentrum Lehrstuhl für Immunologie und Pathopsyiologie
,
Andreas Meinitzer
3   Medizinische Universität Graz, Klinisches Institut für Medizinische und Chemische Labordiagnostik
,
Gregor Gorkiewicz
4   Medizinische Universität Graz, Pathologie
,
Karl Kashofer
4   Medizinische Universität Graz, Pathologie
,
Annamaria Painold
1   LKH Universitätsklinikum Graz, Universitätsklinik für Psychiatrie und psychotherapeutische Medizin
,
Anna Holl
1   LKH Universitätsklinikum Graz, Universitätsklinik für Psychiatrie und psychotherapeutische Medizin
,
Sandra Holasek
2   Medizinische Universität Graz, Otto Loewi Forschungszentrum Lehrstuhl für Immunologie und Pathopsyiologie
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht 07. Februar 2017

akzeptiert 25. November 2017

Publikationsdatum:
26. Juli 2018 (online)

Zusammenfassung

Einleitung Forschungsergebnisse zeigen Veränderungen des Darmmikrobioms bei Anorexia nervosa (AN). Die Alpha-Diversität (AD) repräsentiert die Anzahl von Bakterienarten im Darm. Eine verminderte AD und erhöhte Darmpermeabilität (Zonulin) kann zu Inflammation und Veränderungen der Nährstoffaufnahme führen. Methoden AD wurde aus Stuhlproben von 18 AN-Patientinnen sowie 20 normalgewichtigen Kontrollen (NK) nach 16S RNA Sequenzierung ermittelt. Zusätzlich wurden Zonulin als Marker der Darmbarriere und inflammatorische Parameter bestimmtErgebnisse AN-Patientinnen wiesen im Vergleich zu NK eine verminderte AD auf (Chao-1-Diversity: p=0.043, number of observed species p=0.042). Zonulin zeigte sich bei AN-Patientinnen im Vergleich zu NK nicht signifikant vermindert. Es gab keine Korrelationen zwischen den Serumparametern und AD. Diskussion AN-Patientinnen weisen unabhängig von der Darmpermeabilität eine erniedrigte AD auf. Die reduzierte AD kann die Kalorienaufnahme bei AN zusätzlich negativ beeinflussen. Diese Ergebnisse tragen zu einem besseren Krankheitsverständnis und der Entwicklung neuer Therapieoptionen bei.

Abstract

Introduction Recent research has shown changes of the intestinal flora in anorexia nervosa (AN) patients. Alpha diversity (AD) represents the number of different bacterial species in the gut. Reduced AD and a leaky gut (zonulin) lead to inflammation and changes in nutrient absorption.Methods AD was calculated from stool samples of 18 AN patients and 20 normal weight controls (NC) after 16S ribosomal RNA sequencing. Furthermore, Zonulin as an indicator of gut barrier function and inflammation parameters were investigated.Results AN patients had significantly lower AD compared to NC (number of observed species p=0.042, Chao1 Diversity Index p=0.043). Zonulin was not significantly altered in AN patients compared to NC. There were no significant correlations of serum parameters and AD.Discussion Regardless of gut permeability, AN patients showed significantly decreased AD compared to NC. Decreased AD can have an additional negative impact on calorie intake in AN. These results contribute to a better understanding of the illness and the development of new therapeutic options.

 
  • Literatur

  • 1 Miller CA, Golden NH. An Introduction to Eating Disorders Clinical Presentation, Epidemiology, and Prognosis. Nutrition in Clinical Practice 2010; 25: 110-115
  • 2 Herpertz S, de Zwaan M, Zipfel S. Handbuch Essstörungen und Adipositas: Springer Berlin Heidelberg; 2008
  • 3 Treasure J, Claudino AM, Zucker N. Eating disorders. Lancet 2010; 375: 583-593
  • 4 Zipfel S, Wild B, Gross G. et al. Focal psychodynamic therapy, cognitive behaviour therapy, and optimised treatment as usual in outpatients with anorexia nervosa (ANTOP study): randomised controlled trial. Lancet 2014; 383: 127-137
  • 5 Lewis CM Jr, Obregon-Tito A, Tito RY. et al. The Human Microbiome Project: lessons from human genomics. Trends in microbiology 2012; 20: 1-4
  • 6 Claesson MJ, Jeffery IB, Conde S. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012; 488: 178-184
  • 7 Duncan SH, Lobley G, Holtrop G. et al. Human colonic microbiota associated with diet, obesity and weight loss. International journal of obesity 2008; 32: 1720-1724
  • 8 Cook MD, Allen JM, Pence BD. et al. Exercise and gut immune function: evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training. Immunology and cell biology 2015 , DOI:
  • 9 Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature reviews neuroscience 2012; 13: 701-712
  • 10 Park A, Collins J, Blennerhassett P. et al. Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterology & Motility 2013; 25: 733-e575
  • 11 Guinane CM, Cotter PD. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therapeutic advances in gastroenterology 2013; 6: 295-308
  • 12 Million M, Maraninchi M, Henry M. et al. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. International journal of obesity 2012; 36: 817-825
  • 13 Turnbaugh PJ, Ley RE, Mahowald MA. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. nature 2006; 444: 1027-1131
  • 14 Brahe LK, Le Chatelier E, Prifti E. et al. Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutrition & diabetes 2015; 5: e159
  • 15 Morgan XC, Segata N, Huttenhower C. Biodiversity and functional genomics in the human microbiome. Trends in genetics 2013; 29: 51-58
  • 16 Ott S, Musfeldt M, Wenderoth D. et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 2004; 53: 685-693
  • 17 Beaumont M, Goodrich JK, Jackson MA. et al. Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biology 2016; 17: 189
  • 18 Sherwin E, Rea K, Dinan TG. et al. A gut (microbiome) feeling about the brain. Current opinion in gastroenterology 2016 , DOI:
  • 19 Petra AI, Panagiotidou S, Hatziagelaki E. et al. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clinical therapeutics 2015; 37: 984-995
  • 20 Kleiman SC, Watson HJ, Bulik-Sullivan EC. et al. The intestinal microbiota in acute anorexia nervosa and during renourishment: relationship to depression, anxiety, and eating disorder psychopathology. Psychosomatic medicine 2015; 77: 969-981
  • 21 Morita C, Tsuji H, Hata T. et al. Gut Dysbiosis in Patients with Anorexia Nervosa. PloS one 2015; 10: e0145274
  • 22 Morkl S, Lackner S, Muller W. et al. Gut microbiota and body composition in anorexia nervosa inpatients in comparison to athletes, overweight, obese, and normal weight controls. The International journal of eating disorders 2017; , DOI: DOI: 10.1002/eat.22801.
  • 23 Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiological reviews 2011; 91: 151-175
  • 24 Fasano A, Not T, Wang W. et al. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. The Lancet 2000; 355: 1518-1519
  • 25 Wang W, Uzzau S, Goldblum SE. et al. Human zonulin, a potential modulator of intestinal tight junctions. Journal of cell science 2000; 113: 4435-4440
  • 26 Vanuytsel T, Vermeire S, Cleynen I. The role of Haptoglobin and its related protein, Zonulin, in inflammatory bowel disease. Tissue barriers 2013; 1: e27321
  • 27 Moreno-Navarrete JM, Sabater M, Ortega F. et al. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance. PloS one 2012; 7: e37160
  • 28 Mokkala K, Röytiö H, Munukka E. et al. Gut microbiota richness and composition and dietary intake of overweight pregnant women are related to serum zonulin concentration, a marker for intestinal permeability. The Journal of nutrition 2016; 146: 1694-1700
  • 29 Jésus P, Ouelaa W, François M. et al. Alteration of intestinal barrier function during activity-based anorexia in mice. Clinical Nutrition 2014; 33: 1046-1053
  • 30 Achamrah N, Nobis S, Breton J. et al. Maintaining physical activity during refeeding improves body composition, intestinal hyperpermeability and behavior in anorectic mice. Scientific reports 2016: 6
  • 31 Organization WH. The ICD-10 classification of mental and behavioural disorders: diagnostic criteria for research. 1993 , DOI:
  • 32 Committee IR. Guidelines for data processing and analysis of the International Physical Activity Questionnaire (IPAQ)–short and long forms. Retrieved September 2005; 17: 2008
  • 33 Edgar RC, Haas BJ, Clemente JC. et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011; 27: 2194-2200
  • 34 Schmieder R, Edwards R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PloS one 2011; 6: e17288
  • 35 Bragg L, Stone G, Imelfort M. et al. Fast, accurate error-correction of amplicon pyrosequences using Acacia. Nature Methods 2012; 9: 425-426
  • 36 Chao A. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of statistics 1984 , DOI: 265–270
  • 37 Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological) 1995 , DOI: 289–300
  • 38 Armougom F, Henry M, Vialettes B. et al. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PloS one 2009; 4: e7125
  • 39 Million M, Angelakis E, Maraninchi M. et al. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. International journal of obesity 2013; 37: 1460-1466
  • 40 Pfleiderer A, Lagier J-C, Armougom F. et al. Culturomics identified 11 new bacterial species from a single anorexia nervosa stool sample. European journal of clinical microbiology & infectious diseases 2013; 32: 1471-1481
  • 41 Mack I, Cuntz U, Grämer C. et al. Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints. Scientific reports 2016; 6
  • 42 Duca F, Lam T. Gut microbiota, nutrient sensing and energy balance. Diabetes, Obesity and Metabolism 2014; 16: 68-76
  • 43 Goffredo M, Mass K, Parks EJ. et al. Role of Gut Microbiota and Short Chain Fatty Acids in Modulating Energy Harvest and Fat Partitioning in Youth. The Journal of Clinical Endocrinology & Metabolism 2016; , DOI: jc. 2016-1797
  • 44 Holland AM, Hyatt HW, Smuder AJ. et al. Influence of endurance exercise training on antioxidant enzymes, tight junction proteins, and inflammatory markers in the rat ileum. BMC research notes 2015; 8: 514
  • 45 Lambert GP. Role of gastrointestinal permeability in exertional heatstroke. Exercise and sport sciences reviews 2004; 32: 185-190
  • 46 Denou E, Marcinko K, Surette MG. et al. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. American Journal of Physiology-Endocrinology and Metabolism 2016; 310: E982-E993
  • 47 Clarke SF, Murphy EF, O’Sullivan O. et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 2014 , DOI: gutjnl-2013-306541
  • 48 David LA, Maurice CF, Carmody RN. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505: 559-563
  • 49 Wu GD, Chen J, Hoffmann C. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334: 105-108
  • 50 De Filippo C, Cavalieri D, Di Paola M. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences 2010; 107: 14691-14696
  • 51 Rzewnicki R, Auweele YV, De Bourdeaudhuij I. Addressing overreporting on the International Physical Activity Questionnaire (IPAQ) telephone survey with a population sample. Public health nutrition 2003; 6: 299-305
  • 52 Keyes A, Woerwag-Mehta S, Bartholdy S. et al. Physical activity and the drive to exercise in anorexia nervosa. International Journal of Eating Disorders 2015; 48: 46-54
  • 53 Lieb J. The immunostimulating and antimicrobial properties of lithium and antidepressants. Journal of Infection 2004; 49: 88-93
  • 54 Munoz-Bellido J, Munoz-Criado S, Garcıa-Rodrıguez J. Antimicrobial activity of psychotropic drugs: selective serotonin reuptake inhibitors. International journal of antimicrobial agents 2000; 14: 177-180
  • 55 Hoek HW. Incidence, prevalence and mortality of anorexia nervosa and other eating disorders. Current opinion in psychiatry 2006; 19: 389-394
  • 56 Achamrah N, Coëffier M, Déchelotte P. Physical activity in patients with anorexia nervosa. Nutrition reviews 2016 , DOI: nuw001
  • 57 Malíčková K, Francová I, Lukáš M. et al. Fecal zonulin is elevated in Crohn’s disease and in cigarette smokers. Practical Laboratory Medicine 2017; 9: 39
  • 58 Loganes C, Valencic E, Pin A. et al. Ex vivo response to mucosal bacteria and muramyl dipeptide in inflammatory bowel disease. World journal of gastroenterology 2016; 22: 9734
  • 59 Solmi M, Veronese N, Favaro A. et al. Inflammatory cytokines and anorexia nervosa: A meta-analysis of cross-sectional and longitudinal studies. Psychoneuroendocrinology 2015; 51: 237-252
  • 60 Kahl KG, Kruse N, Rieckmann P. et al. Cytokine mRNA expression patterns in the disease course of female adolescents with anorexia nervosa. Psychoneuroendocrinology 2004; 29: 13-20