CC BY-NC-ND 4.0 · Geburtshilfe Frauenheilkd 2018; 78(01): 54-62
DOI: 10.1055/s-0043-123937
GebFra Science
Review/Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Role of Indocyanine Green in Fluorescence Imaging with Near-Infrared Light to Identify Sentinel Lymph Nodes, Lymphatic Vessels and Pathways Prior to Surgery – A Critical Evaluation of Options

Article in several languages: English | deutsch
Andreas Hackethal
1   Tagesklinik Altonaer Straße, Frauenklinik an der Elbe, Hamburg, Germany
,
Markus Hirschburger
2   Allgemeinchirurgie, Klinikum Worms gGmbH, Worms, Germany
,
Sven Oliver Eicker
3   Neurochirurgie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
,
Thomas Mücke
4   Mund-Kiefer-Gesichtschirurgie, St. Josefshospital, Krefeld-Uerdingen, Germany
,
Christoph Lindner
5   Gynäkologie und Geburtshilfe, Agaplesion Diakonieklinikum Hamburg, Hamburg, Germany
,
Olaf Buchweitz
1   Tagesklinik Altonaer Straße, Frauenklinik an der Elbe, Hamburg, Germany
› Author Affiliations
Further Information

Publication History

received 24 September 2017
revised 29 November 2017

accepted 30 November 2017

Publication Date:
22 January 2018 (online)

Abstract

Modern surgical strategies aim to reduce trauma by using functional imaging to improve surgical outcomes. This reviews considers and evaluates the importance of the fluorescent dye indocyanine green (ICG) to visualize lymph nodes, lymphatic pathways and vessels and tissue borders in an interdisciplinary setting. The work is based on a selective search of the literature in PubMed, Scopus, and Google Scholar and the authorsʼ own clinical experience. Because of its simple, radiation-free and uncomplicated application, ICG has become an important clinical indicator in recent years. In oncologic surgery ICG is used extensively to identify sentinel lymph nodes with promising results. In some studies, the detection rates with ICG have been better than the rates obtained with established procedures. When ICG is used for visualization and the quantification of tissue perfusion, it can lead to fewer cases of anastomotic insufficiency or transplant necrosis. The use of ICG for the imaging of organ borders, flap plasty borders and postoperative vascularization has also been scientifically evaluated. Combining the easily applied ICG dye with technical options for intraoperative and interventional visualization has the potential to create new functional imaging procedures which, in future, could expand or even replace existing established surgical techniques, particularly the techniques used for sentinel lymph node and anastomosis imaging.

 
  • References/Literatur

  • 1 Sugie T, Ikeda T, Kawaguchi A. et al. Sentinel lymph node biopsy using indocyanine green fluorescence in early-stage breast cancer: a meta-analysis. Int J Clin Oncol 2017; 22: 11-17
  • 2 Buda A, Papadia A, Zapardiel I. et al. From conventional radiotracer Tc-99(m) with blue dye to indocyanine green fluorescence: a comparison of methods towards optimization of sentinel lymph node mapping in early stage cervical cancer for a laparoscopic approach. Ann Surg Oncol 2016; 23: 2959-2965
  • 3 Lin H, Ding Z, Kota VG. et al. Sentinel lymph node mapping in endometrial cancer: a systematic review and meta-analysis. Oncotarget 2017; 8: 46601-46610
  • 4 Rocha A, Domínguez AM, Lécuru F. et al. Indocyanine green and infrared fluorescence in detection of sentinel lymph nodes in endometrial and cervical cancer staging – a systematic review. Eur J Obstet Gynecol Reprod Biol 2016; 206: 213-219
  • 5 Handgraaf HJM, Boogerd LSF, Höppener DJ. et al. Long-term follow-up after near-infrared fluorescence-guided resection of colorectal liver metastases: a retrospective multicenter analysis. Eur J Surg Oncol 2017; 43: 1463-1471
  • 6 Tanaka K, Mori R, Kawamura A. et al. Comparison of OCT angiography and indocyanine green angiographic findings with subtypes of polypoidal choroidal vasculopathy. Br J Ophthalmol 2017; 101: 51-55
  • 7 Senders JT, Muskens IS, Schnoor R. Agents for fluorescence-guided glioma surgery: a systematic review of preclinical and clinical results. Acta Neurochir 2017; 159: 151-167
  • 8 Burnier P, Niddam J, Bosc R. et al. Indocyanine green applications in plastic surgery: a review of the literature. Plast Reconstr Aesthet Surg 2017; 70: 814-827
  • 9 Wheeler HO, Cranston WI, Meltzer JI. Hepatic uptake and biliary excretion of indocyanine green in the dog. Proc Soc Exp Biol Med 1958; 99: 11-14
  • 10 Choi HJ, Kim TJ, Lee YY. et al. Time-lapse imaging of sentinel lymph node using indocyanine green with near-infrared fluorescence imaging in early endometrial cancer. J Gynecol Oncol 2016; 27: e27
  • 11 Cherrick GR, Stein SW, Leevy CM. et al. Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest 1960; 39: 592-600
  • 12 Darin MC, Gomez-Hidalgo NR, Westin SN. et al. Role of indocyanine green in sentinel node mapping in gynecologic cancer: is fluorescence imaging the new standard?. J Minim Invasive Gynecol 2016; 23: 186-193
  • 13 Levinson K, Mahdi H, Escobar P. Feasibility and optimal dosage of indocyanine green fluorescence for sentinel lymph node detections using robotic single site instrumentation: preclinical study. J Minim Invasive Gynecol 2013; 12: 211-215
  • 14 Martinelli F, Ditto A, Signorelli M. et al. Sentinel node mapping in endometrial cancer following hysteroscopic injection of tracers: a single center evaluation over 200 cases. Gynecol Oncol 2017; 146: 525-530
  • 15 Ris F, Hompes R, Cunningham C. et al. Near-infrared (NIR) perfusion angiography in minimally invasive colorectal surgery. Surg Endosc 2014; 28: 2221-2226
  • 16 Zhang YM, Shi R, Hou JC. et al. Liver tumor boundaries identified intraoperatively using real-time indocyanine green fluorescence imaging. J Cancer Res Clin Oncol 2017; 143: 51-58
  • 17 Boogerd LSF, Handgraaf HJM, Huurman VAL. et al. The best approach for laparoscopic fluorescence cholangiography: overview of the literature and optimization of dose and dosing time. Surg Innov 2017; 24: 386-396
  • 18 Zhu B, Sevick-Muraca EM. A review of performance of near-infrared fluorescence imaging devices used in clinical studies. Br J Radiol 2015; 88: 20140547
  • 19 Janni W, Kühn T, Schwentner L. et al. Sentinel node biopsy and axillary dissection in breast cancer–the evidence and its limits. Dtsch Arztebl Int 2014; 111: 244-249
  • 20 AWMF. AWMF Leitlinie Mammakarzinom. Online: http://www.awmf.org/uploads/tx_szleitlinien/032-045OL_k_S3__Brustkrebs_Mammakarzinom_Diagnostik_Therapie_Nachsorge_2012-07.pdf last access: 20.05.2017
  • 21 Krag DN, Anderson SJ, Julian TB. et al. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol 2010; 11: 927-933
  • 22 AWMF. AWMF Leitlinien Zervixkarzinom. Online: http://www.awmf.org/uploads/tx_szleitlinien/032-033OLk_S3_Zervixkarzinom_2014-10.pdf last access: 30.01.2017
  • 23 AWMF. AWMF Leitlinien Vulvakarzinom. Online: http://www.awmf.org/uploads/tx_szleitlinien/015-059k_S2k_Vulvakarzinom_und_Vorstufen_Diagnostik_Therapie_2016-11.pdf last access: 30.01.2017
  • 24 NCCN. NCCN guideline. Online: https://www.tri-kobe.org/nccn/guideline/gynecological/english/uterine.pdf last access: 18.08.2017
  • 25 van der Zee AGJ, Oonk MH, De Hullu JA. et al. Sentinel node dissection is safe in the treatment of early-stage vulvar cancer. J Clin Oncol 2008; 26: 884-889
  • 26 Schrenk P, Shamiyeh A, Wayand W. Sentinel lymph-node biopsy compared to axillary lymph-node dissection for axillary staging in breast cancer patients. Eur J Surg Oncol 2001; 27: 378-382
  • 27 van de Lande J. et al. Sentinel lymph node detection in early stage uterine cervix carcinoma: a systematic review. Gynecol Oncol 2007; 106: 604-613
  • 28 Krag DN, Meijer SJ, Weaver DL. et al. Minimal-access surgery for staging of malignant melanoma. Arch Surg 1995; 130: 654-658
  • 29 Tafra L, Lannin DR, Swanson MS. Multicenter trial of sentinel node biopsy for breast cancer using both technetium sulphur colloid and isosulfan blue dye. Ann Surg 2001; 233: 51-59
  • 30 Lee JH, Ryu KW, Kook MC. et al. Feasibility of laparoscopic sentinel basin dissection for limited resection in early gastric cancer. J Surg Oncol 2008; 98: 331-335
  • 31 Buda A, Crivellaro C, Elisei F. et al. Impact of indocyanine green for sentinel lymph node mapping in early stage endometrial and cervical cancer: comparison with conventional radiotracer (99m)Tc and/or blue dye. Ann Surg Oncol 2016; 23: 2183-2191
  • 32 Wuntakal R, Papadopoulos AJ, Montalto SA. et al. Location of sentinel lymph node in cervical carcinoma and factors associated with unilateral detection. Int J Gynecol Cancer 2015; 25: 1663-1668
  • 33 Haid A, Köberle-Wührer R, Offner F. et al. Klinische Wertigkeit und zukünftige Aspekte der „Sentinel Node Biopsy“ beim Mammakarzinom. Chirurg 2003; 74: 657-664
  • 34 Kümmel S, Holtschmidt J, Gerber B. et al. Randomized surgical multicenter trial to evaluate the usefulness of lymphoscintigraphy (LSG) prior to sentinel node biopsy (SLNB) in early breast cancer: SenSzi (GBG80) trial. J Clin Oncol 2017; 35 (15 Suppl.): 555
  • 35 Motomura K, Inaji H, Komoike Y. et al. Sentinel node biopsy guided by indocyanine green dye in breast cancer patients. Jpn J Clin Oncol 1999; 29: 604-607
  • 36 Hojo T, Nagao T, Kikuyama M. et al. Evaluation of sentinel node biopsy by combined fluorescent and dye method and lymph flow for breast cancer. Breast 2010; 19: 210-213
  • 37 Sugie T, Sawada T, Tagaya N. et al. Comparison of the indocyanine green fluorescence and blue dye methods in detection of sentinel lymph nodes in early-stage breast cancer. Ann Surg Oncol 2013; 20: 2213-2218
  • 38 Kitai T, Inomoto T, Miwa M. et al. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer 2005; 12: 211-215
  • 39 Pitsinis V, Provenzano E, Kaklamis L. et al. Indocyanine green fluorescence mapping for sentinel lymph node biopsy in early breast cancer. Surg Oncol 2015; 24: 375-379
  • 40 Liu J, Huang L, Wang N. et al. Indocyanine green detects sentinel lymph nodes in early breast cancer. J Intern Med Res 2017; 45: 514-524
  • 41 Ji Y, Luo N, Jiang Y. et al. Clinical utility of the additional use of blue dye for indocyanine green for sentinel biopsy in breast cancer. J Surg Res 2017; 215: 88-92
  • 42 Grischke EM, Röhm C, Hahn M. et al. ICG fluorescence technique for the detection of sentinel lymph nodes in breast cancer: results of a prospective open-label clinical trial. Geburtsh Frauenheilk 2015; 75: 935-940
  • 43 Paik HJ, Yi HW, Park S. et al. Optimal concentration of indocyanine green in near-infrared fluorescence guided sentinel lymph node biopsy in breast cancer. Cancer Res 2016; Abstr. P3-01-03
  • 44 Zhang X, Li Y, Zhou Y. et al. Diagnostic performance of indocyanine green-guided sentinel lymph node biopsy in breast cancer: a meta-analysis. PLoS 2016; 11: e0155597
  • 45 Ruscito I, Gasparri ML, Braicu EI. et al. Sentinel node mapping in cervical and endometrial cancer: indocyanine green versus other conventional dyes – a meta-analysis. Ann Surg Oncol 2016; 23: 3749-3756
  • 46 Eriksson AG, Beavis A, Soslow RA. et al. A comparison of the detection of sentinel lymph nodes using indocyanine green and near-infrared fluorescence imaging versus blue dye during robotic surgery in uterine cancer. Int J Gynecol Cancer 2017; 27: 743-747
  • 47 Beavis AL, Salazar-Marioni S, Sinno AK. et al. Sentinel lymph node detection rates using indocyanine green in women with early-stage cervical cancer. Gynecol Oncol 2016; 143: 302-306
  • 48 Rossi EC, Kowalski LD, Scalici J. et al. A comparison of sentinel lymph node biopsy to lymphadenectomy for endometrial cancer staging (FIRES trial): a multicentre, prospective, cohort study. Lancet Oncol 2017; 18: 384-392
  • 49 Filippello A, Porcheron J, Klein JP. et al. Affinity of indocyanine green in the detection of colorectal peritoneal carcinomatosis. Surg Innov 2017; 24: 103-108
  • 50 Liberale G, Vankerckhove S, Caldon MG. et al. Fluorescence imaging after indocyanine green injection for detection of peritoneal metastases in patients undergoing cytoreductive surgery for peritoneal carcinomatosis from colorectal cancer: a pilot study. Ann Surg 2016; 264: 1110-1115
  • 51 Branagan G, Finnis D. Wessex Colorectal Cancer Audit Working Group. Prognosis after anastomotic leakage in colorectal surgery. Dis Colon Rectum 2005; 48: 1021-1026
  • 52 Kingham TP, Pachter HL. Colonic anastomotic leak: risk factors, diagnosis and treatment. J Am Coll Surg 2009; 208: 269-278
  • 53 Vignali A, Gianotti L, Braga M. et al. Altered microperfusion at the rectal stump is predictive for rectal anastomotic leak. Dis Colon Rectum 2000; 43: 76-82
  • 54 Karliczek A, Harlaar NJ, Zeebregts CJ. et al. Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery. Int J Colorectal Dis 2009; 24: 569-576
  • 55 Kudszus S, Roesel C, Schachtrupp A. et al. Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage. Langenbecks Arch Surg 2010; 395: 1025-1030
  • 56 Jafari MD, Lee KH, Halabi WJ. et al. The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg Endosc 2013; 27: 3003-3008
  • 57 Kawada K, Hasegawa S, Wada T. Evaluation of intestinal perfusion by ICG fluorescence imaging in laparoscopic colorectal surgery with DST anastomosis. Surg Endosc 2017; 31: 1061-1069
  • 58 Jafari MD, Wexner SD, Martz JE. et al. Perfusion assessment in laparoscopic left sided/anterior resection (PILLAR II): a multi-institutional study. J Am Coll Surg 2015; 220: 82-92
  • 59 Degett TH, Andersen HS, Gögenur I. Indocyanine green fluorescence angiography for intraoperative assessment of gastrointestinal anastomotic perfusion: a systematic review of clinical trials. Langenbecks Arch Surg 2016; 401: 767-775
  • 60 Mizrahi I, Wexner SD. Clinical role of fluorescence imaging in colorectal surgery – a review. Expert Rev Med Devices 2017; 14: 75-82
  • 61 Ishizawa T, Bandai Y, Kokudo N. Fluorescent cholangiography using indocyanine green for laparoscopic cholecystectomy: an initial experience. Arch Surg 2009; 144: 381-382
  • 62 Ishizawa T, Fukushima N, Shibahara J. et al. Real-time identification of liver cancers by using indocyanin green fluorescent imaging. Cancer 2009; 115: 2491-2504
  • 63 Ishizawa T, Masuda K, Urano Y. et al. Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma. Ann Surg Oncol 2014; 21: 440-448
  • 64 Inoue Y, Arita J, Sakamoto T. et al. Anatomical liver resections guided by 3-dimensional parenchymal staining using fusion indocyanine green fluorescence imaging. Ann Surg 2015; 262: 105-111
  • 65 Miyata A, Ishizawa T, Tani K. et al. Reappraisal of a dye-staining technique for anatomic hepatectomy by the concomitant use of indocyanine green fluorescence imaging. J Am Coll Surg 2015; 221: e27-e36
  • 66 Majlesara A, Golriz M, Hafezi M. et al. Indocyanine green fluorescence imaging in hepatobiliary surgery. Photodiagnosis Photodyn Ther 2017; 17: 208-215 10.1016/j.pdpdt.2016.12.005
  • 67 Daskalaki D, Fernandes E, Wang X. et al. Indocyanine green (ICG) fluorescent cholangiography during robotic cholecystectomy: results of 184 consecutive cases in a single institution. Surg Innov 2014; 21: 615-621
  • 68 Gangemi A, Danilkowicz R, Elli FE. et al. Could ICG-aided robotic cholecystectomy reduce the rate of open conversion reported with laparoscopic approach? A head to head comparison of the largest single institution studies. J Robot Surg 2017; 11: 77-82
  • 69 Abdel-Galil K, Mitchell D. Postoperative monitoring of microsurgical free-tissue transfers for head and neck reconstruction: a systematic review of current techniques–part II. Invasive techniques. Br J Oral Maxillofac Surg 2009; 47: 438-442
  • 70 Abdel-Galil K, Mitchell D. Postoperative monitoring of microsurgical free-tissue transfers for head and neck reconstruction: a systematic review of current techniques–part I. Non-invasive techniques. Br J Oral Maxillofac Surg 2009; 47: 351-355
  • 71 Holm C, Mayr M, Hofter E. et al. Assessment of the patency of microvascular anastomoses using microscope-integrated near-infrared angiography: a preliminary study. Microsurgery 2009; 29: 509-514
  • 72 Mücke T, Wolff KD, Wagenpfeil S. et al. Reliability of near-infrared angiography and micro-Doppler sonography for evaluating microvascular anastomoses. Plast Reconstr Surg 2010; 126: 1506-1514
  • 73 Holzbach T, Taskov C, Henke J. et al. [Evaluation of perfusion in skin flaps by laser-induced indocyanine green fluorescence]. Handchir Mikrochir Plast Chir 2005; 37: 396-402
  • 74 Mücke T, Fichter AM, Schmidt LH. et al. Indocyanine green videoangiography-assisted prediction of flap necrosis in the rat epigastric flap using the flow® 800 tool. Microsurgery 2017; 37: 235-242
  • 75 Mücke T, Reeps C, Wolff KD. et al. Objective qualitative and quantitative assessment of blood flow with near-infrared angiography in microvascular anastomoses in the rat model. Microsurgery 2013; 33: 287-296
  • 76 Mücke T, Wolff KD, Wagenpfeil S. et al. Reliability of near-infrared angiography and micro-Doppler sonography for evaluating microvascular anastomoses. Plast Reconstr Surg 2010; 126: 1506-1514
  • 77 Detter C, Wipper S, Russ D. et al. Fluorescent cardiac imaging: a novel intraoperative method for quantitative assessment of myocardial perfusion during graded coronary artery stenosis. Circulation 2007; 116: 1007-1014
  • 78 Kamp MA, Slotty P, Turowski B. et al. Microscope-integrated quantitative analysis of intraoperative indocyanine green fluorescence angiography for blood flow assessment: first experience in 30 patients. Neurosurgery 2012; DOI: 10.1227/NEU.0b013e31822f7d7c.
  • 79 Holm C, Dornseifer U, Sturtz G. et al. The intrinsic transit time of free microvascular flaps: clinical and prognostic implications. Microsurgery 2010; 30: 91-96
  • 80 Holm C, Mayr M, Hofter E. et al. Assessment of the patency of microvascular anastomoses using microscope-integrated near-infrared angiography: a preliminary study. Microsurgery 2009; 29: 509-514
  • 81 Waseda K, Ako J, Hasegawa T. et al. Intraoperative fluorescence imaging system for on-site assessment of off-pump coronary artery bypass graft. JACC Cardiovasc Imaging 2009; 2: 604-612
  • 82 Holm C, Dornseifer U, Sturtz G. et al. Sensitivity and specificity of ICG angiography in free flap reexploration. J Reconstr Microsurg 2010; 26: 311-316
  • 83 Holzbach T, Artunian N, Spanholtz TA. et al. [Microscope-integrated intraoperative indocyanine green angiography in plastic surgery]. Handchir Mikrochir Plast Chir 2012; 44: 84-88
  • 84 Zimmermann A, Roenneberg C, Wendorff H. et al. Early postoperative detection of tissue necrosis in amputation stumps with indocyanine green fluorescence angiography. Vasc Endovascular Surg 2010; 44: 269-273
  • 85 Chiang VL, Gailloud P, Murphy KJ. et al. Routine intraoperative angiography during aneurysm surgery. J Neurosurg 2002; 96: 988-992
  • 86 Raabe A, Beck J, Gerlach R. et al. Near-infrared indocyanine green video angiography: a new method for intraoperative assessment of vascular flow. Neurosurgery 2003; 52: 132-139
  • 87 Hänggi D, Etminan N, Steiger HJ. The impact of microscope-integrated intraoperative near-infrared indocyanine green videoangiography on surgery of arteriovenous malformations and dural arteriovenous fistulae. Neurosurgery 2003; 67: 1094-1103
  • 88 Raabe A, Nakaji P, Beck J. et al. Prospective evaluation of surgical microscope–integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery. J Neurosurg 2005; 103: 982-989
  • 89 Takai K, Kurita H, Hara T. et al. Influence of indocyanine green angiography on microsurgical treatment of spinal perimedullary arteriovenous fistulas. Neurosurg Focus 2016; 40: E10
  • 90 Murai Y, Adachi K, Matano F. et al. Indocyanin green videoangiography study of hemangioblastomas. Can J Neurol Sci 2011; 38: 41-47
  • 91 Kamp MA, Sarikaya-Seiwert S, Petridis AK. et al. Intraoperative indocyanine green-based cortical perfusion assessment in patients suffering from severe traumatic brain injury. World Neurosurg 2017; 101: 431-443
  • 92 Garski TR, Staller BJ, Hepner G. et al. Adverse reactions after administration of indocyanine green. JAMA 1978; 240: 635