Klinische Neurophysiologie 2018; 49(01): 41-47
DOI: 10.1055/s-0043-125296
Originalia
© Georg Thieme Verlag KG Stuttgart · New York

Sprachlokalisation mittels MEG und EEG in der prächirurgischen Epilepsiediagnostik

Presurgical Localization of Language in MEG and EEG
Ekaterina Pataraia
1   Universitätsklinik für Neurologie, Medizinische Universität Wien, Österreich
,
Karin Trimmel
1   Universitätsklinik für Neurologie, Medizinische Universität Wien, Österreich
› Author Affiliations
Further Information

Publication History

Publication Date:
29 January 2018 (online)

Zusammenfassung

Ziel der Epilepsiechirurgie ist die Entfernung des epileptogenen Gewebes, dabei darf kein neurologisches oder neuropsychologisches Defizit verursacht werden. Aus diesem Grund ist die möglichst genaue Abgrenzung des sprachspezifischen Kortex von großer Bedeutung. In der folgenden narrativen Übersicht werden die methodischen Grundlagen und klinischen Anwendungen der Magnetoenzephalografie (MEG) und der hochauflösenden Skalp-Elektroenzephalografie (EEG) diskutiert. Es wird eine kurze Übersicht zu diversen Verfahren gegeben, die zur Lateralisation und Lokalisation der Sprachfunktionen in der MEG und bei Quellenanalysemethoden in der EEG benützt werden. Darüber hinaus werden die Möglichkeiten und Grenzen beider Methoden zur Erfassung der Organisation und Reorganisation der Sprachfunktionen des Kortex bei Epilepsieerkrankten besprochen.

Abstract

The aim of epilepsy surgery is to remove the epileptogenic zone. At the same time, essential brain regions like areas supporting language functions have to be spared in order to avoid neurological deficits caused by the operation. For this reason, identification of the brain regions mediating language is of great importance: precise knowledge of the language-specific zones can facilitate surgical planning and reduce the morbidity associated with resection of eloquent cortex, especially in cases of epilepsy surgery. In the following narrative review, we present the methodological principles and clinical application of magnetoencephalography (MEG) and high-resolution scalp electroencephalography (EEG). We discuss different procedures used in lateralization and localization of language functions in MEG as well as source analysis methods in EEG. In addition, we present the possibilities of both of these methods and their limitations in capturing data on the organization and reorganization of language functions in epilepsy patients.

 
  • Literatur

  • 1 Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med 2000; 342: 314-319
  • 2 Kwan P, Arzimanoglou A, Berg AT. et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2010; 51: 1069-1077
  • 3 Engel Jr. J. Surgery for seizures. N Engl J Med 1996; 334: 647-652
  • 4 Loring DW, Meador KJ, Lee GP. et al. Cerebral language lateralization: evidence from intracarotid amobarbital testing. Neuropsychologia 1990; 28: 831-838
  • 5 Strauss E, Wada J. Lateral preferences and cerebral speech dominance. Cortex 1983; 19: 165-177
  • 6 Lesser RP, Luders H, Morris HH. et al. Electrical stimulation of Wernicke's area interferes with comprehension. Neurology 1986; 36: 658-663
  • 7 Ojemann G, Ojemann J, Lettich E. et al. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 1989; 71: 316-326
  • 8 Loddenkemper T, Morris HH, Moddel G. Complications during the Wada test. Epilepsy Behav 2008; 13: 551-553
  • 9 Williamson SJ, Robinson SE. L K. Methods and instrumentation for biomagnetism. In: Atsumi KKM, Ueno S, Katila T, Williamson S. (Hrsg.) Biomagnetism '87. Tokyo Denki University Press; 1988: 18-25
  • 10 Baumgartner C, Doppelbauer A, Deecke L. et al. Neuromagnetic investigation of somatotopy of human hand somatosensory cortex. Exp Brain Res 1991; 87: 641-648
  • 11 Baumgartner C, Doppelbauer A, Sutherling WW. et al. Somatotopy of human hand somatosensory cortex as studied in scalp EEG. Electroencephalogr Clin Neurophysiol 1993; 88: 271-279
  • 12 Kamada K, Takeuchi F, Kuriki S. et al. Functional neurosurgical simulation with brain surface magnetic resonance images and magnetoencephalography. Neurosurgery 1993; 33: 269-272 discussion 272-263
  • 13 Breier JI, Simos PG, Zouridakis G. et al. Language dominance determined by magnetic source imaging: a comparison with the Wada procedure. Neurology 1999; 53: 938-945
  • 14 Papanicolaou AC, Simos PG, Castillo EM. et al. Magnetocephalography: a noninvasive alternative to the Wada procedure. J Neurosurg 2004; 100: 867-876
  • 15 Pataraia E, Billingsley-Marshall RL, Castillo EM. et al. Organization of receptive language-specific cortex before and after left temporal lobectomy. Neurology 2005; 64: 481-487
  • 16 Luck S. An introduction to the event-related potential technique. MIT Press; 2005
  • 17 Papanicolaou AC, Simos PG, Breier JI. et al. Magnetoencephalographic mapping of the language-specific cortex. J Neurosurg 1999; 90: 85-93
  • 18 Stok CJ, Meijs JW, Peters MJ. Inverse solutions based on MEG and EEG applied to volume conductor analysis. Phys Med Biol 1987; 32: 99-104
  • 19 Ebersole JS, Squires KC, Eliashiv SD. et al. Applications of magnetic source imaging in evaluation of candidates for epilepsy surgery. Neuroimaging Clin N Am 1995; 5: 267-288
  • 20 Kim JS, Chung CK. Language lateralization using MEG beta frequency desynchronization during auditory oddball stimulation with one-syllable words. Neuroimage 2008; 42: 1499-1507
  • 21 Szymanski MD, Perry DW, Gage NM. et al. Magnetic source imaging of late evoked field responses to vowels: toward an assessment of hemispheric dominance for language. J Neurosurg 2001; 94: 445-453
  • 22 Szymanski MD, Rowley HA, Roberts TP. A hemispherically asymmetrical MEG response to vowels. Neuroreport 1999; 10: 2481-2486
  • 23 Simos PG, Breier JI, Zouridakis G. et al. Assessment of functional cerebral laterality for language using magnetoencephalography. J Clin Neurophysiol 1998; 15: 364-372
  • 24 Breier JI, Castillo EM, Simos PG. et al. Atypical language representation in patients with chronic seizure disorder and achievement deficits with magnetoencephalography. Epilepsia 2005; 46: 540-548
  • 25 Breier JI, Simos PG, Wheless JW. et al. Language dominance in children as determined by magnetic source imaging and the intracarotid amobarbital procedure: a comparison. J Child Neurol 2001; 16: 124-130
  • 26 Simos PG, Breier JI, Maggio WW. et al. Atypical temporal lobe language representation: MEG and intraoperative stimulation mapping correlation. Neuroreport 1999; 10: 139-142
  • 27 Maestu F, Ortiz T, Fernandez A. et al. Spanish language mapping using MEG: a validation study. Neuroimage 2002; 17: 1579-1586
  • 28 Valaki CE, Maestu F, Simos PG. et al. Cortical organization for receptive language functions in Chinese, English, and Spanish: a cross-linguistic MEG study. Neuropsychologia 2004; 42: 967-979
  • 29 Kamada K, Takeuchi F, Kuriki S. et al. Dissociated expressive and receptive language functions on magnetoencephalography, functional magnetic resonance imaging, and amobarbital studies. Case report and review of the literature. J Neurosurg 2006; 104: 598-607
  • 30 Kamada K, Sawamura Y, Takeuchi F. et al. Expressive and receptive language areas determined by a non-invasive reliable method using functional magnetic resonance imaging and magnetoencephalography. Neurosurgery 2007; 60: 296-305 discussion 305-296
  • 31 Bowyer SM, Moran JE, Weiland BJ. et al. Language laterality determined by MEG mapping with MR-FOCUSS. Epilepsy Behav 2005; 6: 235-241
  • 32 Breier JI, Papanicolaou AC. Spatiotemporal patterns of brain activation during an action naming task using magnetoencephalography. J Clin Neurophysiol 2008; 25: 7-12
  • 33 Fisher AE, Furlong PL, Seri S. et al. Interhemispheric differences of spectral power in expressive language: a MEG study with clinical applications. Int J Psychophysiol 2008; 68: 111-122
  • 34 Yamamoto M, Ukai S, Shinosaki K. et al. Spatially filtered magnetoencephalographic analysis of cortical oscillatory changes in basic brain rhythms during the Japanese 'Shiritori' Word Generation Task. Neuropsychobiology 2006; 53: 215-222
  • 35 Bowyer SM, Fleming T, Greenwald ML. et al. Magnetoencephalographic localization of the basal temporal language area. Epilepsy Behav 2005; 6: 229-234
  • 36 Berger H. Ueber das Elektrenkephalogramm des Menschen. Arch Psych 1929; 87: 527-570
  • 37 Kutas M, Hillyard SA. Reading between the lines: event-related brain potentials during natural sentence processing. Brain Lang 1980; 11: 354-373
  • 38 Grunwald T, Elger CE, Lehnertz K. et al. Alterations of intrahippocampal cognitive potentials in temporal lobe epilepsy. Electroencephalogr Clin Neurophysiol 1995; 95: 53-62
  • 39 Lau EF, Phillips C, Poeppel D. A cortical network for semantics: (de)constructing the N400. Nat Rev Neurosci 2008; 9: 920-933
  • 40 Franklin MS, Dien J, Neely JH. et al. Semantic priming modulates the N400, N300, and N400RP. Clin Neurophysiol 2007; 118: 1053-1068
  • 41 Kutas M, Federmeier KD. Electrophysiology reveals semantic memory use in language comprehension. Trends Cogn Sci 2000; 4: 463-470
  • 42 Dien J. The neurocognitive basis of reading single words as seen through early latency ERPs: a model of converging pathways. Biol Psychol 2009; 80: 10-22
  • 43 Bookheimer S. Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu Rev Neurosci 2002; 25: 151-188
  • 44 Dronkers NF, Wilkins DP, Van Valin RD. et al. Lesion analysis of the brain areas involved in language comprehension. Cognition 2004; 92: 145-177
  • 45 Nobre AC, McCarthy G. Language-related field potentials in the anterior-medial temporal lobe: II. Effects of word type and semantic priming. J Neurosci 1995; 15: 1090-1098
  • 46 Spironelli C, Angrilli A. Language lateralization in phonological, semantic and orthographic tasks: a slow evoked potential study. Behav Brain Res 2006; 175: 296-304
  • 47 Spironelli C, Angrilli A. Developmental aspects of automatic word processing: language lateralization of early ERP components in children, young adults and middle-aged subjects. Biol Psychol 2009; 80: 35-45
  • 48 Eulitz C, Hauk O, Cohen R. Electroencephalographic activity over temporal brain areas during phonological encoding in picture naming. Clin Neurophysiol 2000; 111: 2088-2097
  • 49 McDonald CR, Thesen T, Carlson C. et al. Multimodal imaging of repetition priming: Using fMRI, MEG, and intracranial EEG to reveal spatiotemporal profiles of word processing. Neuroimage 2010; 53: 707-717
  • 50 Gerschlager W, Lalouschek W, Lehrner J. et al. Language-related hemispheric asymmetry in healthy subjects and patients with temporal lobe epilepsy as studied by event-related brain potentials and intracarotid amobarbital test. Electroencephalogr Clin Neurophysiol 1998; 108: 274-282
  • 51 Trimmel K, Sachsenweger J, Lindinger G. et al. Lateralization of language function in epilepsy patients: A high-density scalp-derived event-related potentials (ERP) study. Clin Neurophysiol 2017; 128: 472-479
  • 52 Herrmann CS, Fründ I, Lenz D. Human gamma-band activity: a review on cognitive and behavioral correlates and network models. Neurosci Biobehav Rev 2010; 34: 981-992
  • 53 Röhm D, Klimesch W, Haider H. et al. The role of theta and alpha oscillations for language comprehension in the human electroencephalogram. Neurosci Lett 2001; 310: 137-140
  • 54 Bastiaansen M, Hagoort P. Oscillatory neuronal dynamics during language comprehension. Prog Brain Res 2006; 159: 179-196
  • 55 Tanji K, Suzuki K, Delorme A. et al. High-frequency gamma-band activity in the basal temporal cortex during picture-naming and lexical-decision tasks. J Neurosci 2005; 25: 3287-3293
  • 56 Crone NE, Hao L, Hart J. et al. Electrocorticographic gamma activity during word production in spoken and sign language. Neurology 2001; 57: 2045-2053
  • 57 Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 2005; 9: 474-480
  • 58 Singer W. Neuronal synchrony: a versatile code for the definition of relations?. Neuron 1999; 24: 49-65 111–125
  • 59 Kojima K, Brown EC, Rothermel R. et al. Multimodality language mapping in patients with left-hemispheric language dominance on Wada test. Clin Neurophysiol 2012; 123: 1917-1924
  • 60 Kojima K, Brown EC, Rothermel R. et al. Clinical significance and developmental changes of auditory-language-related gamma activity. Clin Neurophysiol 2013; 124: 857-869
  • 61 Sinai A, Bowers CW, Crainiceanu CM. et al. Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming. Brain 2005; 128: 1556-1570
  • 62 Jerbi K, Ossandón T, Hamamé CM. et al. Task-related gamma-band dynamics from an intracerebral perspective: review and implications for surface EEG and MEG. Hum Brain Mapp 2009; 30: 1758-1771
  • 63 Crone NE, Miglioretti DL, Gordon B. et al. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 1998; 121 Pt 12 2301-2315
  • 64 Edwards E, Soltani M, Deouell LY. et al. High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. J Neurophysiol 2005; 94: 4269-4280
  • 65 Yuval-Greenberg S, Tomer O, Keren AS. et al. Transient induced gamma-band response in EEG as a manifestation of miniature saccades. Neuron 2008; 58: 429-441
  • 66 Morillon B, Lehongre K, Frackowiak RS. et al. Neurophysiological origin of human brain asymmetry for speech and language. Proc Natl Acad Sci U S A 2010; 107: 18688-18693
  • 67 Ramon C, Holmes M, Freeman WJ. et al. Power spectral density changes and language lateralization during covert object naming tasks measured with high-density EEG recordings. Epilepsy Behav 2009; 14: 54-59
  • 68 Michel CM, Murray MM, Lantz G. et al. EEG source imaging. Clin Neurophysiol 2004; 115: 2195-2222
  • 69 Grech R, Cassar T, Muscat J. et al Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabil 2008; 5: 25
  • 70 Bradley A, Yao J, Dewald J. et al. Evaluation of electroencephalography source localization algorithms with multiple cortical sources. PLoS One 2016; 11: e0147266
  • 71 Tenke CE, Kayser J. Generator localization by current source density (CSD): implications of volume conduction and field closure at intracranial and scalp resolutions. Clin Neurophysiol 2012; 123: 2328-2345
  • 72 Kamarajan C, Pandey AK, Chorlian DB. et al. The use of current source density as electrophysiological correlates in neuropsychiatric disorders: A review of human studies. Int J Psychophysiol 2015; 97: 310-322
  • 73 Kayser J, Tenke CE. Issues and considerations for using the scalp surface Laplacian in EEG/ERP research: A tutorial review. Int J Psychophysiol 2015; 97: 189-209
  • 74 Junghöfer M, Elbert T, Leiderer P. et al. Mapping EEG-potentials on the surface of the brain: a strategy for uncovering cortical sources. Brain Topogr 1997; 9: 203-217
  • 75 Grave de Peralta R, Gonzalez Andino S. Comparison of algorithms for the localization of focal sources: evaluation with simulated data and analysis of experimental data (online journal). International Journal of Bioelectromagnetism 2002
  • 76 Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 1994; 18: 49-65
  • 77 Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 2002; 24 Suppl D 5-12
  • 78 Michel CM, Thut G, Morand S. et al. Electric source imaging of human brain functions. Brain Res Brain Res Rev 2001; 36: 108-118
  • 79 Michel CM, Murray MM. Towards the utilization of EEG as a brain imaging tool. Neuroimage 2012; 61: 371-385
  • 80 Fabbri-Destro M, Avanzini P, De Stefani E. et al. Interaction Between Words and Symbolic Gestures as Revealed By N400. Brain Topogr 2015; 28: 591-605
  • 81 Vitacco D, Brandeis D, Pascual-Marqui R. et al Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Hum Brain Mapp 2002; 17: 4-12