Klinische Neurophysiologie 2018; 49(02): 78-82
DOI: 10.1055/s-0043-125302
Originalia
© Georg Thieme Verlag KG Stuttgart · New York

Bildgebung: elektrische EEG-Quellenanalyse

Imaging: electric source localization
Margherita Carboni
1   EEG & Epilepsy Unit, Hôpital Universitaire Genève, Schweiz
,
Gianpaolo Toscano
1   EEG & Epilepsy Unit, Hôpital Universitaire Genève, Schweiz
2   IRCCS Istituto Neurologico Mondino, Italien
,
Margitta Seeck
1   EEG & Epilepsy Unit, Hôpital Universitaire Genève, Schweiz
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
12. Juni 2018 (online)

Zusammenfassung

Quellenanalyse auf der Basis von Skalp-EEG, idealerweise von hochauflösendem EEG, hat sich etabliert als ein bildgebendes Medium, welches bestehende Verfahren ergänzt. Im Gegensatz zu anderen Techniken kann EEG-basierte Bildgebung die Quelle der neuronalen Aktivität millisekundengenau zu diesem Zeitpunkt abbilden, d.h es handelt sich nicht um indirekte Korrelate der elektrischen Aktivität wie Blutfluss oder Glucosekonsum. Prospektive Studien konnten zeigen, dass Quellenanalyse in einer Mehrheit der Patienten, die sich einer epilepsiechirugischen Therapie unterzogen, den Fokus korrekt im strukturellen MRI des Patienten lokalisiert. Bis dato konnte dies in mehreren Hundert Patienten gezeigt werden: die Wahrscheinlichkeit, nach einer resektiven Intervention anfallsfrei zu sein, ist 10 x höher wenn die elektrische Quelle zusammen mit der strukturellen Anomalie reseziert wurde als wenn dies nicht der Fall war. Studien in operierten Patienten und/oder mit intrakraniellem EEG konnten zeigen, dass es eine hohe Konkordanz zwischen der errechneten Quelle und dem intrakraniellem Fokus gibt. Weitere Anwendungen finden sich in der Lokalisierung von vitalem Kortex mithilfe von evozierten Potenzialen. Insgesamt ist die EEG-basierte Bildgebung relativ einfach zu akquirieren, kann auch bei Kindern und anderen Personen mit begrenzter Kollaboration durchgeführt werden, kann mit fMRI kombiniert werden und ist, vergleichen mit anderen Bildgebungsverfahren, relativ billig. Mögliche zukünftige Anwendungen betreffen die Ermittelung von epileptogener Aktivität bei vermeindlich normalem EEG und Netzwerkanalysen sowie die Netzwerk-Dysfunktionen in anderen neurologischen und psychiatrischen Erkrankungen.

Abstract

Source analysis on the basis of scalp EEG, ideally with high density EEG, has been established as an imaging tool, which complements existing tools. In contrast to other techniques EEG-based imaging visualizes neuronal activity with a resolution of milliseconds, i.e. it is does not measure indirect consequences of epileptic activity such as blood flow changes or glucose consumption. Prospective studies showed that electric source localization localizes the focus correctly in the vast majority of patients who underwent surgical treatment. Up to now, in several hundreds of patients it was found: the likelihood to benefit from epilepsy surgery is 10x higher if the electrical source is removed together with the structural anomaly if that was not the case. Studies in operated patients and/or intracranial EEG could show that there is a high concordance between the calculated source and the intracranial focus. Other applications include the localization of vital cortex with evoked potentials. Overall, EEG-based imaging is relatively easily acquired and can be done also in children or other persons with limited collaboration capacities, can be combined with fMRI and is relatively cheap compared to other imaging tools. Possible future application could be the identification of epileptogenic activity in presumably normal EEG and network analysis, as well as network dysfunctions in other neurological and psychiatric diseases.

 
  • Literatur

  • 1 Scherg M, Bast T, Berg P. Multiple source analysis of interictal spikes: goals, requirements, and clinical value. J Clin Neurophysiol 1999; 16: 214-224
  • 2 Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 1994; 18: 49-65
  • 3 Michel CM, Murray MM. Towards the utilization of EEG as a brain imaging tool. Neuroimage 2012; 61: 371-385
  • 4 Sekihara Km Nagarajan SS. Neuromagnetic source reconstruction and inverse modeling. In: He B. (Ed.). Modeling and Imaging of Biolelectric Activity – Principles and Applications. New York: Kluwer Academic/Plenum Publishers; 213-250
  • 5 Beniczky S, Rosenzweig I, Scherg M. et al. Ictal EEG source imaging in presurgical evaluation: High agreement between analysis methods. Seizure 2016; 43: 1-5
  • 6 Plummer C, Wagner M, Fuchs M. et al. Dipole versus distributed EEG source localization for single versus averaged spikes in focal epilepsy. J Clin Neurophysiol 2010; 27: 141-162
  • 7 Lantz G, Grave de Peralta R, Spinelli L. et al Epileptic source localization with high density EEG: How many electrodes are needed?. Clin Neurophysiol 2003; 114: 63-69
  • 8 Song J, Davey C, Poulsen C. et al. EEG source localization: Sensor density and head surface coverage. J Neurosci Methods 2015; 256: 9-21
  • 9 Seeck M, Koessler L, Bast T. et al. The standardized EEG electrode array of the IFCN. Clin Neurophysiol 2017; 128: 2070-2077
  • 10 Mălîia MD, Meritam P, Scherg M. et al. Epileptiform discharge propagation: Analyzing spikes from the onset to the peak. Clin Neurophysiol 2016; 127: 2127-2133
  • 11 Lantz G, Spinelli L, Seeck M. et al. Propagation of interictal epileptiform activity can lead to erroneous source localizations: a 128-channel EEG mapping study. J Clin Neurophysiol 2003; 20: 311-319
  • 12 Megevand P, Spinelli L, Genetti M. et al. Electric source imaging of interictal activity accurately localizes the seizure onset zone. J Neurol Neurosurg Psychiatry 2014; 85: 38-43
  • 13 Yamazaki M, Tucker DM, Fujimoto A. et al. Comparison of dense array EEG with simultaneous intracranial EEG for Interictal spike detection and localization. Epilepsy Res 2012; 98: 166-173
  • 14 Brodbeck V, Spinelli L, Lascano AM. et al. Electroencephalographic source imaging: A prospective study of 152 operated epileptic patients. Brain 2011; 134: 2887-2897
  • 15 Lascano AM, Perneger T, Vulliemoz S. et al. Yield of MRI, high-density electric source imaging (HD-ESI), SPECT and PET in epilepsy surgery candidates. Clin Neurophysiol 2016; 127: 150-155
  • 16 Holmes MD, Tucker DM, Quiring JM. et al. Comparing noninvasive dense array and intracranial electroencephalography for localization of seizures. Neurosurgery 2010; 66: 354-362
  • 17 Nemtsas P, Birot G, Pittau F. et al. Source localization of ictal epileptic activity based on high-density scalp EEG data. Epilepsia 2017; 58: 1027-1036
  • 18 Grimm C, Schreiber A, Kristeva-Feige R. et al. A comparison between electric source localisation and fMRI during somatosensory stimulation. Electroencephalogr Clin Neurophysiol 1998; 106: 22-29
  • 19 Lascano AM, Grouiller F, Genetti M. et al. Surgically relevant localization of the central sulcus with high-density somatosensory-evoked potentials compared with functional magnetic resonance imaging. Neurosurgery 2014; 74: 517-526
  • 20 Klamer S, Elshahabi A, Lerche H. et al. Differences between MEG and high-density EEG source localizations using a distributed source model in comparison to fMRI. Brain Topogr. 2015; 28: 87-94
  • 21 Lascano AM, Lalive PH, Hardmeier M. et al. Clinical evoked potentials in neurology: a review of techniques and indications. J Neurol Neurosurg Psychiatry 2017; 88: 688-696
  • 22 Chowdhury RA, Merlet I, Birot G. et al. Complex patterns of spatially extended generators of epileptic activity: Comparison of source localization methods cMEM and 4-ExSo-MUSIC on high resolution EEG and MEG data. Neuroimage 2016; 143: 175-195
  • 23 van Mierlo P, Strobbe G, Keereman V et al. Automated long-term EEG analysis to localize the epileptogenic zone. Epilepsia Open 2017