Clin Colon Rectal Surg 2023; 36(06): 423-429
DOI: 10.1055/s-0043-1767700
Review Article

Impact of Molecular Status on Metastasectomy of Colorectal Cancer Liver Metastases

Yan-Yan Wang
1   Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
,
Ze-Chang Xin
1   Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
,
Kun Wang
1   Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
› Author Affiliations
Funding None.

Abstract

Although surgical resection could provide better survival for patients with colorectal cancer liver metastases (CRLM), the recurrence rate after resection of CRLM remains high. The progress of genome sequencing technologies has greatly improved the molecular understanding of colorectal cancer. In the era of genomics and targeted therapy, genetic mutation analysis is of great significance to guide systemic treatment and identify patients who can benefit from resection of CRLM. RAS and BRAF mutations and microsatellite instability/deficient deoxyribonucleic acid (DNA) mismatch repair status have been incorporated into current clinical practice. Other promising molecular biomarkers such as coexisting gene mutations and circulating tumor DNA are under active investigation. This study aimed to review the prognostic significance of molecular biomarkers in patients with CRLM undergoing metastasectomy based on the current evidence.



Publication History

Article published online:
09 April 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Sung H, Ferlay J, Siegel RL. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71 (03) 209-249
  • 2 Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol 2019; 16 (12) 713-732
  • 3 Leung U, Gönen M, Allen PJ. et al. Colorectal cancer liver metastases and concurrent extrahepatic disease treated with resection. Ann Surg 2017; 265 (01) 158-165
  • 4 Kopetz S, Chang GJ, Overman MJ. et al. Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J Clin Oncol 2009; 27 (22) 3677-3683
  • 5 Cervantes A, Adam R, Roselló S. et al; ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2023; 34 (01) 10-32
  • 6 Van Cutsem E, Nordlinger B, Adam R. et al; European Colorectal Metastases Treatment Group. Towards a pan-European consensus on the treatment of patients with colorectal liver metastases. Eur J Cancer 2006; 42 (14) 2212-2221
  • 7 Adam R. Chemotherapy and surgery: new perspectives on the treatment of unresectable liver metastases. Ann Oncol 2003; 14 (Suppl 2): ii13-ii16
  • 8 de Jong MC, Pulitano C, Ribero D. et al. Rates and patterns of recurrence following curative intent surgery for colorectal liver metastasis: an international multi-institutional analysis of 1669 patients. Ann Surg 2009; 250 (03) 440-448
  • 9 Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer 2017; 17 (02) 79-92
  • 10 Testa U, Castelli G, Pelosi E. Genetic alterations of metastatic colorectal cancer. Biomedicines 2020; 8 (10) 8
  • 11 Hewitt DB, Brown ZJ, Pawlik TM. The role of biomarkers in the management of colorectal liver metastases. Cancers (Basel) 2022; 14 (19) 14
  • 12 Kawaguchi Y, Kopetz S, Newhook TE. et al. Mutation status of RAS, TP53, and SMAD4 is superior to mutation status of RAS alone for predicting prognosis after resection of colorectal liver metastases. Clin Cancer Res 2019; 25 (19) 5843-5851
  • 13 Yamashita S, Chun YS, Kopetz SE. et al. APC and PIK3CA mutational cooperativity predicts pathologic response and survival in patients undergoing resection for colorectal liver metastases. Ann Surg 2020; 272 (06) 1080-1085
  • 14 Yaeger R, Chatila WK, Lipsyc MD. et al. Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer Cell 2018; 33 (01) 125-136.e3
  • 15 Wang HW, Yan XL, Wang LJ. et al. Characterization of genomic alterations in Chinese colorectal cancer patients with liver metastases. J Transl Med 2021; 19 (01) 313
  • 16 Serebriiskii IG, Connelly C, Frampton G. et al. Comprehensive characterization of RAS mutations in colon and rectal cancers in old and young patients. Nat Commun 2019; 10 (01) 3722
  • 17 Saeed O, Lopez-Beltran A, Fisher KW. et al. RAS genes in colorectal carcinoma: pathogenesis, testing guidelines and treatment implications. J Clin Pathol 2019; 72 (02) 135-139
  • 18 Siena S, Sartore-Bianchi A, Di Nicolantonio F, Balfour J, Bardelli A. Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst 2009; 101 (19) 1308-1324
  • 19 Brudvik KW, Kopetz SE, Li L, Conrad C, Aloia TA, Vauthey JN. Meta-analysis of KRAS mutations and survival after resection of colorectal liver metastases. Br J Surg 2015; 102 (10) 1175-1183
  • 20 Schirripa M, Cremolini C, Loupakis F. et al. Role of NRAS mutations as prognostic and predictive markers in metastatic colorectal cancer. Int J Cancer 2015; 136 (01) 83-90
  • 21 Cercek A, Braghiroli MI, Chou JF. et al. Clinical features and outcomes of patients with colorectal cancers harboring NRAS mutations. Clin Cancer Res 2017; 23 (16) 4753-4760
  • 22 Liu W, Zhang W, Xu Y, Li YH, Xing BC. A prognostic scoring system to predict survival outcome of resectable colorectal liver metastases in this modern era. Ann Surg Oncol 2021; 28 (12) 7709-7718
  • 23 Brudvik KW, Mise Y, Chung MH. et al. RAS mutation predicts positive resection margins and narrower resection margins in patients undergoing resection of colorectal liver metastases. Ann Surg Oncol 2016; 23 (08) 2635-2643
  • 24 Zhang Q, Peng J, Ye M. et al. KRAS mutation predicted more mirometastases and closer resection margins in patients with colorectal cancer liver metastases. Ann Surg Oncol 2020; 27 (04) 1164-1173
  • 25 Margonis GA, Sasaki K, Kim Y. et al. Tumor biology rather than surgical technique dictates prognosis in colorectal cancer liver metastases. J Gastrointest Surg 2016; 20 (11) 1821-1829
  • 26 Margonis GA, Sasaki K, Andreatos N. et al. KRAS mutation status dictates optimal surgical margin width in patients undergoing resection of colorectal liver metastases. Ann Surg Oncol 2017; 24 (01) 264-271
  • 27 Hatta AAZ, Pathanki AM, Hodson J. et al. The effects of resection margin and KRAS status on outcomes after resection of colorectal liver metastases. HPB (Oxford) 2021; 23 (01) 90-98
  • 28 Bertsimas D, Margonis GA, Sujichantararat S. et al. Using artificial intelligence to find the optimal margin width in hepatectomy for colorectal cancer liver metastases. JAMA Surg 2022; 157 (08) e221819
  • 29 Viganò L, Capussotti L, De Rosa G, De Saussure WO, Mentha G, Rubbia-Brandt L. Liver resection for colorectal metastases after chemotherapy: impact of chemotherapy-related liver injuries, pathological tumor response, and micrometastases on long-term survival. Ann Surg 2013; 258 (05) 731-740 , discussion 741–742
  • 30 Lipsyc M, Yaeger R. Impact of somatic mutations on patterns of metastasis in colorectal cancer. J Gastrointest Oncol 2015; 6 (06) 645-649
  • 31 Margonis GA, Buettner S, Andreatos N. et al. Anatomical resections improve disease-free survival in patients with KRAS-mutated colorectal liver metastases. Ann Surg 2017; 266 (04) 641-649
  • 32 Joechle K, Vreeland TJ, Vega EA. et al. Anatomic resection is not required for colorectal liver metastases with RAS mutation. J Gastrointest Surg 2020; 24 (05) 1033-1039
  • 33 Choi M, Han DH, Choi JS, Choi GH. Can the presence of KRAS mutations guide the type of liver resection during simultaneous resection of colorectal liver metastasis?. Ann Hepatobiliary Pancreat Surg 2022; 26 (02) 125-132
  • 34 Brown KM, Albania MF, Samra JS, Kelly PJ, Hugh TJ. Propensity score analysis of non-anatomical versus anatomical resection of colorectal liver metastases. BJS Open 2019; 3 (04) 521-531
  • 35 Brouquet A, Abdalla EK, Kopetz S. et al. High survival rate after two-stage resection of advanced colorectal liver metastases: response-based selection and complete resection define outcome. J Clin Oncol 2011; 29 (08) 1083-1090
  • 36 Passot G, Chun YS, Kopetz SE. et al. Predictors of safety and efficacy of 2-stage hepatectomy for bilateral colorectal liver metastases. J Am Coll Surg 2016; 223 (01) 99-108
  • 37 Sandström P, Røsok BI, Sparrelid E. et al. ALPPS improves resectability compared with conventional two-stage hepatectomy in patients with advanced colorectal liver metastasis: results from a Scandinavian multicenter randomized controlled trial (LIGRO trial). Ann Surg 2018; 267 (05) 833-840
  • 38 Serenari M, Alvarez FA, Ardiles V, de Santibañes M, Pekolj J, de Santibañes E. The ALPPS approach for colorectal liver metastases: impact of KRAS mutation status in survival. Dig Surg 2018; 35 (04) 303-310
  • 39 Petrowsky H, Linecker M, Raptis DA. et al. First long-term oncologic results of the ALPPS procedure in a large cohort of patients with colorectal liver metastases. Ann Surg 2020; 272 (05) 793-800
  • 40 Lee GH, Malietzis G, Askari A, Bernardo D, Al-Hassi HO, Clark SK. Is right-sided colon cancer different to left-sided colorectal cancer? - a systematic review. Eur J Surg Oncol 2015; 41 (03) 300-308
  • 41 Liu W, Wang HW, Wang K, Xing BC. The primary tumor location impacts survival outcome of colorectal liver metastases after hepatic resection: a systematic review and meta-analysis. Eur J Surg Oncol 2019; 45 (08) 1349-1356
  • 42 Sasaki K, Margonis GA, Wilson A. et al. Prognostic implication of KRAS status after hepatectomy for colorectal liver metastases varies according to primary colorectal tumor location. Ann Surg Oncol 2016; 23 (11) 3736-3743
  • 43 Wang K, Xu D, Yan XL, Poston G, Xing BC. The impact of primary tumour location in patients undergoing hepatic resection for colorectal liver metastasis. Eur J Surg Oncol 2018; 44 (06) 771-777
  • 44 Margonis GA, Amini N, Buettner S. et al. The prognostic impact of primary tumor site differs according to the KRAS mutational status: a study by the International Genetic Consortium for Colorectal Liver Metastasis. Ann Surg 2021; 273 (06) 1165-1172
  • 45 Kim HS, Lee JM, Kim HS. et al. Prognosis of synchronous colorectal liver metastases after simultaneous curative-intent surgery according to primary tumor location and KRAS mutational status. Ann Surg Oncol 2020; 27 (13) 5150-5158
  • 46 Edkins S, O'Meara S, Parker A. et al. Recurrent KRAS codon 146 mutations in human colorectal cancer. Cancer Biol Ther 2006; 5 (08) 928-932
  • 47 Margonis GA, Kim Y, Spolverato G. et al. Association between specific mutations in KRAS codon 12 and colorectal liver metastasis. JAMA Surg 2015; 150 (08) 722-729
  • 48 Lin Z, Liu Y, Cai S, Yang C, Zhou L, Li W. Not all Kirsten rat sarcoma viral oncogene homolog mutations predict poor survival in patients with unresectable colorectal liver metastasis. Technol Cancer Res Treat 2021; 20: 15 330338211039131
  • 49 Amini N, Andreatos N, Margonis GA. et al. Mutant KRAS as a prognostic biomarker after hepatectomy for rectal cancer metastases: does the primary disease site matter?. J Hepatobiliary Pancreat Sci 2022; 29 (04) 417-427
  • 50 Margonis GA, Kim Y, Sasaki K, Samaha M, Amini N, Pawlik TM. Codon 13 KRAS mutation predicts patterns of recurrence in patients undergoing hepatectomy for colorectal liver metastases. Cancer 2016; 122 (17) 2698-2707
  • 51 Sanz-Garcia E, Argiles G, Elez E, Tabernero J. BRAF mutant colorectal cancer: prognosis, treatment, and new perspectives. Ann Oncol 2017; 28 (11) 2648-2657
  • 52 Wang PP, Lin C, Wang J, Margonis GA, Wu B. BRAF mutations in colorectal liver metastases: prognostic implications and potential therapeutic strategies. Cancers (Basel) 2022; 14 (17) 14
  • 53 Yaeger R, Cercek A, Chou JF. et al. BRAF mutation predicts for poor outcomes after metastasectomy in patients with metastatic colorectal cancer. Cancer 2014; 120 (15) 2316-2324
  • 54 Schirripa M, Bergamo F, Cremolini C. et al. BRAF and RAS mutations as prognostic factors in metastatic colorectal cancer patients undergoing liver resection. Br J Cancer 2015; 112 (12) 1921-1928
  • 55 Pikouli A, Papaconstantinou D, Wang J. et al. Reevaluating the prognostic role of BRAF mutation in colorectal cancer liver metastases. Am J Surg 2022; 223 (05) 879-883
  • 56 Schirripa M, Biason P, Lonardi S. et al. Class 1, 2, and 3 BRAF-mutated metastatic colorectal cancer: a detailed clinical, pathologic, and molecular characterization. Clin Cancer Res 2019; 25 (13) 3954-3961
  • 57 Jones JC, Renfro LA, Al-Shamsi HO. et al. Non-V600 BRAF mutations define a clinically distinct molecular subtype of metastatic colorectal cancer. J Clin Oncol 2017; 35 (23) 2624-2630
  • 58 Margonis GA, Buettner S, Andreatos N. et al. Association of BRAF mutations with survival and recurrence in surgically treated patients with metastatic colorectal liver cancer. JAMA Surg 2018; 153 (07) e180996
  • 59 Johnson B, Jin Z, Truty MJ. et al. Impact of metastasectomy in the multimodality approach for BRAF V600E metastatic colorectal cancer: the Mayo Clinic experience. Oncologist 2018; 23 (01) 128-134
  • 60 Kobayashi S, Takahashi S, Takahashi N. et al. Survival outcomes of resected BRAF V600E mutant colorectal liver metastases: a multicenter retrospective cohort study in Japan. Ann Surg Oncol 2020; 27 (09) 3307-3315
  • 61 Javed S, Benoist S, Devos P. et al. Prognostic factors of BRAF V600E colorectal cancer with liver metastases: a retrospective multicentric study. World J Surg Oncol 2022; 20 (01) 131
  • 62 Chun YS, Passot G, Yamashita S. et al. Deleterious effect of RAS and evolutionary high-risk TP53 double mutation in colorectal liver metastases. Ann Surg 2019; 269 (05) 917-923
  • 63 Løes IM, Immervoll H, Sorbye H. et al. Impact of KRAS, BRAF, PIK3CA, TP53 status and intraindividual mutation heterogeneity on outcome after liver resection for colorectal cancer metastases. Int J Cancer 2016; 139 (03) 647-656
  • 64 Isella C, Mellano A, Galimi F. et al. MACC1 mRNA levels predict cancer recurrence after resection of colorectal cancer liver metastases. Ann Surg 2013; 257 (06) 1089-1095
  • 65 Bao X, Wang K, Liu M. et al. Characterization of genomic alterations in colorectal liver metastasis and their prognostic value. Front Cell Dev Biol 2022; 9: 760618
  • 66 Datta J, Smith JJ, Chatila WK. et al. Coaltered Ras/B-raf and TP53 is associated with extremes of survivorship and distinct patterns of metastasis in patients with metastatic colorectal cancer. Clin Cancer Res 2020; 26 (05) 1077-1085
  • 67 Frankel TL, Vakiani E, Nathan H. et al. Mutation location on the RAS oncogene affects pathologic features and survival after resection of colorectal liver metastases. Cancer 2017; 123 (04) 568-575
  • 68 Deming DA, Leystra AA, Nettekoven L. et al. PIK3CA and APC mutations are synergistic in the development of intestinal cancers. Oncogene 2014; 33 (17) 2245-2254
  • 69 Strickler JH, Yoshino T, Graham RP, Siena S, Bekaii-Saab T. Diagnosis and treatment of ERBB2-positive metastatic colorectal cancer: a review. JAMA Oncol 2022; 8 (05) 760-769
  • 70 Ross JS, Fakih M, Ali SM. et al. Targeting HER2 in colorectal cancer: the landscape of amplification and short variant mutations in ERBB2 and ERBB3. Cancer 2018; 124 (07) 1358-1373
  • 71 Torres-Jiménez J, Esteban-Villarrubia J, Ferreiro-Monteagudo R. Precision medicine in metastatic colorectal cancer: targeting ERBB2 (HER-2) oncogene. Cancers (Basel) 2022; 14 (15) 14
  • 72 Meric-Bernstam F, Hurwitz H, Raghav KPS. et al. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol 2019; 20 (04) 518-530
  • 73 Yagisawa M, Sawada K, Nakamura Y. et al. Prognostic value and molecular landscape of HER2 low-expressing metastatic colorectal cancer. Clin Colorectal Cancer 2021; 20 (02) 113-120 .e1
  • 74 Ingold Heppner B, Behrens HM, Balschun K. et al. HER2/neu testing in primary colorectal carcinoma. Br J Cancer 2014; 111 (10) 1977-1984
  • 75 Han J, Wang X, Zhang C. et al. Clinicopathological and prognostic significance of HER2 status in surgically resected colorectal liver metastases. J Surg Oncol 2022; 125 (06) 991-1001
  • 76 Boland CR, Thibodeau SN, Hamilton SR. et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998; 58 (22) 5248-5257
  • 77 André T, Shiu KK, Kim TW. et al; KEYNOTE-177 Investigators. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med 2020; 383 (23) 2207-2218
  • 78 Toh JWT, Phan K, Reza F, Chapuis P, Spring KJ. Rate of dissemination and prognosis in early and advanced stage colorectal cancer based on microsatellite instability status: systematic review and meta-analysis. Int J Colorectal Dis 2021; 36 (08) 1573-1596
  • 79 Venderbosch S, Nagtegaal ID, Maughan TS. et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res 2014; 20 (20) 5322-5330
  • 80 Jin Z, Sanhueza CT, Johnson B. et al. Outcome of mismatch repair-deficient metastatic colorectal cancer: the Mayo Clinic experience. Oncologist 2018; 23 (09) 1083-1091
  • 81 Turner KM, Delman AM, Wima K. et al. Microsatellite instability is associated with worse overall survival in resectable colorectal liver metastases. Am J Surg 2022; S0002-9610 (22)00504-9
  • 82 Matteo B, Gaetano P, Delfina T. et al. Immunohistochemical evaluation of microsatellite instability in resected colorectal liver metastases: a preliminary experience. Med Oncol 2020; 37 (07) 63
  • 83 Alix-Panabières C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov 2016; 6 (05) 479-491
  • 84 Tsilimigras DI, Ntanasis-Stathopoulos I, Pawlik TM. Liquid biopsies in colorectal liver metastases: towards the era of precision oncologic surgery. Cancers (Basel) 2022; 14 (17) 14
  • 85 Callesen LB, Takacova T, Hamfjord J. et al. Circulating DNA in patients undergoing loco-regional treatment of colorectal cancer metastases: a systematic review and meta-analysis. Ther Adv Med Oncol 2022; 14: 17 588359221133171
  • 86 Newhook TE, Overman MJ, Chun YS. et al. Prospective study of perioperative circulating tumor DNA dynamics in patients undergoing hepatectomy for colorectal liver metastases. Ann Surg 2022; DOI: 10.1097/SLA.0000000000005461.
  • 87 Øgaard N, Reinert T, Henriksen TV. et al. Tumour-agnostic circulating tumour DNA analysis for improved recurrence surveillance after resection of colorectal liver metastases: a prospective cohort study. Eur J Cancer 2022; 163: 163-176
  • 88 Tie J, Wang Y, Cohen J. et al. Circulating tumor DNA dynamics and recurrence risk in patients undergoing curative intent resection of colorectal cancer liver metastases: a prospective cohort study. PLoS Med 2021; 18 (05) e1003620