CC BY-NC-ND 4.0 · Asian J Neurosurg 2023; 18(02): 246-257
DOI: 10.1055/s-0043-1769754
Review Article

Stereotactic Radiosurgery as Treatment for Brain Metastases: An Update

Isabela Peña-Pino
1   Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States
,
Clark C. Chen
2   Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, United States
› Author Affiliations

Abstract

Stereotactic radiosurgery (SRS) is a mainstay treatment option for brain metastasis (BM). While guidelines for SRS use have been outlined by professional societies, consideration of these guidelines should be weighed in the context of emerging literature, novel technology platforms, and contemporary treatment paradigms. Here, we review recent advances in prognostic scale development for SRS-treated BM patients and survival outcomes as a function of the number of BM and cumulative intracranial tumor volume. Focus is placed on the role of stereotactic laser thermal ablation in the management of BM that recur after SRS and the management of radiation necrosis. Neoadjuvant SRS prior to surgical resection as a means of minimizing leptomeningeal spread is also discussed.



Publication History

Article published online:
16 June 2023

© 2023. Asian Congress of Neurological Surgeons. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Patchell RA. The treatment of brain metastases. Cancer Invest 1996; 14 (02) 169-177
  • 2 Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol 2004; 22 (14) 2865-2872
  • 3 Valiente M, Ahluwalia MS, Boire A. et al. The evolving landscape of brain metastasis. Trends Cancer 2018; 4 (03) 176-196
  • 4 Brown PD, Jaeckle K, Ballman KV. et al. Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial. JAMA 2016; 316 (04) 401-409
  • 5 Davey P. Brain metastases: treatment options to improve outcomes. CNS Drugs 2002; 16 (05) 325-338
  • 6 Meyers CA, Smith JA, Bezjak A. et al. Neurocognitive function and progression in patients with brain metastases treated with whole-brain radiation and motexafin gadolinium: results of a randomized phase III trial. J Clin Oncol 2004; 22 (01) 157-165
  • 7 Greenberg MS. Handbook of Neurosurgery. 7th ed.. New York: Thieme; 2006
  • 8 Suh JH, Kotecha R, Chao ST, Ahluwalia MS, Sahgal A, Chang EL. Current approaches to the management of brain metastases. Nat Rev Clin Oncol 2020; 17 (05) 279-299
  • 9 van den Bent MJ. The diagnosis and management of brain metastases. Curr Opin Neurol 2001; 14 (06) 717-723
  • 10 Langer CJ, Mehta MP. Current management of brain metastases, with a focus on systemic options. J Clin Oncol 2005; 23 (25) 6207-6219
  • 11 Weaver BD, Goodman JR, Jensen R. Concurrent radiosurgery and systemic therapies for melanoma brain metastases: a systematic review. Cureus 2019; 11 (11) e6147
  • 12 Wu Y-L, Ahn M-J, Garassino MC. et al. CNS efficacy of osimertinib in patients with T790M-positive advanced non-small-cell lung cancer: data from a randomized phase III trial (AURA3). J Clin Oncol 2018; 36 (26) 2702-2709
  • 13 Sperduto PW, Chao ST, Sneed PK. et al. Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: a multi-institutional analysis of 4,259 patients. Int J Radiat Oncol Biol Phys 2010; 77 (03) 655-661
  • 14 Jenkinson MD, Haylock B, Shenoy A, Husband D, Javadpour M. Management of cerebral metastasis: evidence-based approach for surgery, stereotactic radiosurgery and radiotherapy. Eur J Cancer 2011; 47 (05) 649-655
  • 15 Lassman AB, DeAngelis LM. Brain metastases. Neurol Clin 2003; 21 (01) 1-23 , vii vii
  • 16 Gough M, Nielsen M, Coulter IC, Holliman D. Survival outcomes following craniotomy for intracranial metastases from an unknown primary. Int J Clin Oncol 2020; 25 (08) 1475-1482
  • 17 Prabhu RS, Press RH, Patel KR. et al. Single-fraction stereotactic radiosurgery (SRS) alone versus surgical resection and SRS for large brain metastases: a multi-institutional analysis. Int J Radiat Oncol Biol Phys 2017; 99 (02) 459-467
  • 18 Mahajan A, Ahmed S, McAleer MF. et al. Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-centre, randomised, controlled, phase 3 trial. Lancet Oncol 2017; 18 (08) 1040-1048
  • 19 O'Neill BP, Iturria NJ, Link MJ, Pollock BE, Ballman KV, O'Fallon JR. A comparison of surgical resection and stereotactic radiosurgery in the treatment of solitary brain metastases. Int J Radiat Oncol Biol Phys 2003; 55 (05) 1169-1176
  • 20 Chidel MA, Suh JH, Reddy CA, Chao ST, Lundbeck MF, Barnett GH. Application of recursive partitioning analysis and evaluation of the use of whole brain radiation among patients treated with stereotactic radiosurgery for newly diagnosed brain metastases. Int J Radiat Oncol Biol Phys 2000; 47 (04) 993-999
  • 21 Patchell RA, Tibbs PA, Regine WF. et al. Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA 1998; 280 (17) 1485-1489
  • 22 Patchell RA, Tibbs PA, Walsh JW. et al. A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 1990; 322 (08) 494-500
  • 23 Armstrong JG, Wronski M, Galicich J, Arbit E, Leibel SA, Burt M. Postoperative radiation for lung cancer metastatic to the brain. J Clin Oncol 1994; 12 (11) 2340-2344
  • 24 Hagen NA, Cirrincione C, Thaler HT, DeAngelis LM. The role of radiation therapy following resection of single brain metastasis from melanoma. Neurology 1990; 40 (01) 158-160
  • 25 Verhaak E, Gehring K, Hanssens PEJ, Aaronson NK, Sitskoorn MM. Health-related quality of life in adult patients with brain metastases after stereotactic radiosurgery: a systematic, narrative review. Support Care Cancer 2020; 28 (02) 473-484
  • 26 Mulvenna P, Nankivell M, Barton R. et al. Dexamethasone and supportive care with or without whole brain radiotherapy in treating patients with non-small cell lung cancer with brain metastases unsuitable for resection or stereotactic radiotherapy (QUARTZ): results from a phase 3, non-inferiority, randomised trial. Lancet 2016; 388 (10055): 2004-2014
  • 27 Flickinger JC, Lunsford LD, Kondziolka D. Dose prescription and dose-volume effects in radiosurgery. Neurosurg Clin N Am 1992; 3 (01) 51-59
  • 28 Higuchi Y, Matsuda S, Serizawa T. Gamma knife radiosurgery in movement disorders: Indications and limitations. Mov Disord 2017; 32 (01) 28-35
  • 29 Andrews DW, Scott CB, Sperduto PW. et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet 2004; 363 (9422): 1665-1672
  • 30 El Shafie RA, Celik A, Weber D. et al. A matched-pair analysis comparing stereotactic radiosurgery with whole-brain radiotherapy for patients with multiple brain metastases. J Neurooncol 2020; 147 (03) 607-618
  • 31 Yamamoto M, Serizawa T, Higuchi Y. et al. A multi-institutional prospective observational study of stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901 Study Update): irradiation-related complications and long-term maintenance of Mini-Mental State Examination scores. Int J Radiat Oncol Biol Phys 2017; 99 (01) 31-40
  • 32 Gatterbauer B, Hirschmann D, Eberherr N. et al. Toxicity and efficacy of Gamma Knife radiosurgery for brain metastases in melanoma patients treated with immunotherapy or targeted therapy-a retrospective cohort study. Cancer Med 2020; 9 (11) 4026-4036
  • 33 Hoskin PJ, Crow J, Ford HT. The influence of extent and local management on the outcome of radiotherapy for brain metastases. Int J Radiat Oncol Biol Phys 1990; 19 (01) 111-115
  • 34 Ebner DK, Gorovets D, Rava P. et al. Patients with long-term control of systemic disease are a favorable prognostic group for treatment of brain metastases with stereotactic radiosurgery alone. World Neurosurg 2017; 98: 266-272
  • 35 Rades D, Nguyen T, Schild SE. Extra-cerebral metastasis - an independent predictor of survival in older patients with brain metastases receiving a local therapy plus whole-brain radiotherapy (WBRT). Anticancer Res 2020; 40 (05) 2841-2845
  • 36 Mehta MP. The physical, biologic, and clinical basis of radiosurgery. Curr Probl Cancer 1995; 19 (05) 265-329
  • 37 Bowden GN, Kim JO, Faramand A, Fallon K, Flickinger J, Lunsford LD. Clinical dose profile of Gamma Knife stereotactic radiosurgery for extensive brain metastases. J Neurosurg 2020; 134 (05) 1430-1434
  • 38 Adler Jr JR, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL. The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 1997; 69 (1-4 Pt 2): 124-128
  • 39 Wen N, Snyder KC, Scheib SG. et al. Technical note: evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system. Med Phys 2016; 43 (05) 2527
  • 40 Thomas EM, Popple RA, Covington E. et al. Initial experiences with first North American deployment of HyperArc radiosurgery treatment planning and delivery system on the edge platform. Int J Radiat Oncol Biol Phys 2018; 102: e519-e520
  • 41 Weidlich GA, Schneider MB, Adler JR. Characterization of a novel revolving radiation collimator. Cureus 2018; 10 (02) e2146
  • 42 Barker C, Lowe M, Radhakrishna G. An introduction to proton beam therapy. Br J Hosp Med (Lond) 2019; 80 (10) 574-578
  • 43 Meeks SL, Pukala J, Ramakrishna N, Willoughby TR, Bova FJ. Radiosurgery technology development and use. J Radiosurg SBRT 2011; 1 (01) 21-29
  • 44 Shaw E, Scott C, Souhami L. et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys 2000; 47 (02) 291-298
  • 45 Marshall DC, Marcus LP, Kim TE. et al. Management patterns of patients with cerebral metastases who underwent multiple stereotactic radiosurgeries. J Neurooncol 2016; 128 (01) 119-128
  • 46 Loo M, Pin Y, Thierry A, Clavier JB. Single-fraction radiosurgery versus fractionated stereotactic radiotherapy in patients with brain metastases: a comparative study. Clin Exp Metastasis 2020; 37 (03) 425-434
  • 47 Ito D, Aoyagi K, Nagano O, Serizawa T, Iwadate Y, Higuchi Y. Comparison of two-stage Gamma Knife radiosurgery outcomes for large brain metastases among primary cancers. J Neurooncol 2020; 147 (01) 237-246
  • 48 Lau SKM, Patel K, Kim T. et al. Clinical efficacy and safety of surface imaging guided radiosurgery (SIG-RS) in the treatment of benign skull base tumors. J Neurooncol 2017; 132 (02) 307-312
  • 49 Gaspar L, Scott C, Rotman M. et al. Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys 1997; 37 (04) 745-751
  • 50 Yamamoto M, Sato Y, Serizawa T. et al. Subclassification of recursive partitioning analysis Class II patients with brain metastases treated radiosurgically. Int J Radiat Oncol Biol Phys 2012; 83 (05) 1399-1405
  • 51 Lutterbach J, Bartelt S, Stancu E, Guttenberger R. Patients with brain metastases: hope for recursive partitioning analysis (RPA) class 3. Radiother Oncol 2002; 63 (03) 339-345
  • 52 Weltman E, Salvajoli JV, Brandt RA. et al. Radiosurgery for brain metastases: a score index for predicting prognosis. Int J Radiat Oncol Biol Phys 2000; 46 (05) 1155-1161
  • 53 Lorenzoni J, Devriendt D, Massager N. et al. Radiosurgery for treatment of brain metastases: estimation of patient eligibility using three stratification systems. Int J Radiat Oncol Biol Phys 2004; 60 (01) 218-224
  • 54 Sperduto PW, Berkey B, Gaspar LE, Mehta M, Curran W. A new prognostic index and comparison to three other indices for patients with brain metastases: an analysis of 1,960 patients in the RTOG database. Int J Radiat Oncol Biol Phys 2008; 70 (02) 510-514
  • 55 Sperduto PW, Kased N, Roberge D. et al. Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J Clin Oncol 2012; 30 (04) 419-425
  • 56 Nieder C, Hintz M, Bilger A, Oehlke O, Grosu AL. Validation of the graded prognostic assessment for melanoma using molecular markers (Melanoma-molGPA). J Clin Med Res 2018; 10 (03) 178-181
  • 57 Sperduto PW, Jiang W, Brown PD. et al. Estimating survival in melanoma patients with brain metastases: an update of the graded prognostic assessment for melanoma using molecular markers (Melanoma-molGPA). Int J Radiat Oncol Biol Phys 2017; 99 (04) 812-816
  • 58 Ko PH, Kim HJ, Lee JS, Kim WC. Tumor volume and sphericity as predictors of local control after stereotactic radiosurgery for limited number (1-4) brain metastases from nonsmall cell lung cancer. Asia Pac J Clin Oncol 2020; 16 (03) 165-171
  • 59 Shi S, Sandhu N, Jin MC. et al. Stereotactic radiosurgery for resected brain metastases: single-institutional experience of over 500 cavities. Int J Radiat Oncol Biol Phys 2020; 106 (04) 764-771
  • 60 Huang C-Y, Lee C-C, Yang H-C. et al. Radiomics as prognostic factor in brain metastases treated with Gamma Knife radiosurgery. J Neurooncol 2020; 146 (03) 439-449
  • 61 Graber JJ, Cobbs CS, Olson JJ. Congress of neurological surgeons systematic review and evidence-based guidelines on the use of stereotactic radiosurgery in the treatment of adults with metastatic brain tumors. Neurosurgery 2019; 84 (03) E168-E170
  • 62 Yamamoto M, Serizawa T, Shuto T. et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol 2014; 15 (04) 387-395
  • 63 Ali MA, Hirshman BR, Wilson B. et al. Survival patterns of 5750 stereotactic radiosurgery-treated patients with brain metastasis as a function of the number of lesions. World Neurosurg 2017; 107: 944-951.e1
  • 64 Minniti G, Capone L, Nardiello B. et al. Neurological outcome and memory performance in patients with 10 or more brain metastases treated with frameless linear accelerator (LINAC)-based stereotactic radiosurgery. J Neurooncol 2020; 148 (01) 47-55
  • 65 Palmer JD, Sebastian NT, Chu J. et al. Single-isocenter multitarget stereotactic radiosurgery is safe and effective in the treatment of multiple brain metastases. Adv Radiat Oncol 2019; 5 (01) 70-76
  • 66 Hirshman BR, Wilson B, Ali MA. et al. Superior prognostic value of cumulative intracranial tumor volume relative to largest intracranial tumor volume for stereotactic radiosurgery-treated brain metastasis patients. Neurosurgery 2018; 82 (04) 473-480
  • 67 Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 2004; 14 (03) 198-206
  • 68 Ali MA, Hirshman BR, Wilson B. et al. Improving the prognostic value of disease-specific graded prognostic assessment model for renal cell carcinoma by incorporation of cumulative intracranial tumor volume. World Neurosurg 2017; 108: 151-156
  • 69 Sharma M, Jia X, Ahluwalia M. et al. Cumulative intracranial tumor volume and number of brain metastasis as predictors of developing new lesions after stereotactic radiosurgery for brain metastasis. World Neurosurg 2017; 106: 666-675
  • 70 Joshi RS, Hirshman BR, Ali MA. et al. Prognostic importance of cumulative intracranial tumor volume in patients with gastrointestinal brain metastasis treated with stereotactic radiosurgery. World Neurosurg 2019; 121: e747-e754
  • 71 Kwon K-Y, Kong D-S, Lee J-I, Nam DH, Park K, Kim JH. Outcome of repeated radiosurgery for recurrent metastatic brain tumors. Clin Neurol Neurosurg 2007; 109 (02) 132-137
  • 72 Carpentier A, McNichols RJ, Stafford RJ. et al. Laser thermal therapy: real-time MRI-guided and computer-controlled procedures for metastatic brain tumors. Lasers Surg Med 2011; 43 (10) 943-950
  • 73 Ali MA, Carroll KT, Rennert RC. et al. Stereotactic laser ablation as treatment for brain metastases that recur after stereotactic radiosurgery: a multiinstitutional experience. Neurosurg Focus 2016; 41 (04) E11
  • 74 Alattar AA, Bartek Jr J, Chiang VL. et al. Stereotactic laser ablation as treatment of brain metastases recurring after stereotactic radiosurgery: a systematic literature review. World Neurosurg 2019; 128: 134-142
  • 75 Ahluwalia M, Barnett GH, Deng D. et al. Laser ablation after stereotactic radiosurgery: a multicenter prospective study in patients with metastatic brain tumors and radiation necrosis. J Neurosurg 2018; 130 (03) 804-811
  • 76 Chen JC, Petrovich Z, Giannotta SL, Yu C, Apuzzo ML. Radiosurgical salvage therapy for patients presenting with recurrence of metastatic disease to the brain. Neurosurgery 2000; 46 (04) 860-866 , discussion 866–867
  • 77 Yomo S, Hayashi M. Salvage stereotactic radiosurgery with adjuvant use of bevacizumab for heavily treated recurrent brain metastases: a preliminary report. J Neurooncol 2016; 127 (01) 119-126
  • 78 Minniti G, Scaringi C, Paolini S. et al. Repeated stereotactic radiosurgery for patients with progressive brain metastases. J Neurooncol 2016; 126 (01) 91-97
  • 79 Fritz C, Borsky K, Stark LS. et al. Repeated courses of radiosurgery for new brain metastases to defer whole brain radiotherapy: feasibility and outcome with validation of the new prognostic metric brain metastasis velocity. Front Oncol 2018; 8: 551
  • 80 Balermpas P, Stera S, Müller von der Grün J. et al. Repeated in-field radiosurgery for locally recurrent brain metastases: Feasibility, results and survival in a heavily treated patient cohort. PLoS One 2018; 13 (06) e0198692
  • 81 Moreau J, Khalil T, Dupic G. et al. Second course of stereotactic radiosurgery for locally recurrent brain metastases: safety and efficacy. PLoS One 2018; 13 (04) e0195608
  • 82 Brown DA, Lu VM, Himes BT. et al. Breast brain metastases are associated with increased risk of leptomeningeal disease after stereotactic radiosurgery: a systematic review and meta-analysis. Clin Exp Metastasis 2020; 37 (02) 341-352
  • 83 Johnson MD, Avkshtol V, Baschnagel AM. et al. Surgical resection of brain metastases and the risk of leptomeningeal recurrence in patients treated with stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 2016; 94 (03) 537-543
  • 84 Nguyen TK, Sahgal A, Detsky J. et al. Predictors of leptomeningeal disease following hypofractionated stereotactic radiotherapy for intact and resected brain metastases. Neuro-oncol 2020; 22 (01) 84-93
  • 85 Cagney DN, Lamba N, Sinha S. et al. Association of neurosurgical resection with development of pachymeningeal seeding in patients with brain metastases. JAMA Oncol 2019; 5 (05) 703-709
  • 86 Prabhu RS, Turner BE, Asher AL. et al. A multi-institutional analysis of presentation and outcomes for leptomeningeal disease recurrence after surgical resection and radiosurgery for brain metastases. Neuro-oncol 2019; 21 (08) 1049-1059
  • 87 Prabhu RS, Miller KR, Asher AL. et al. Preoperative stereotactic radiosurgery before planned resection of brain metastases: updated analysis of efficacy and toxicity of a novel treatment paradigm. J Neurosurg 2018; DOI: 10.3171/2018.7.JNS181293.
  • 88 Patel KR, Burri SH, Asher AL. et al. Comparing preoperative with postoperative stereotactic radiosurgery for resectable brain metastases: a multi-institutional analysis. Neurosurgery 2016; 79 (02) 279-285
  • 89 Patel AR, Nedzi L, Lau S. et al. Neoadjuvant stereotactic radiosurgery before surgical resection of cerebral metastases. World Neurosurg 2018; 120: e480-e487
  • 90 Vetlova E, Golbin DA, Golanov AV. et al. Preoperative stereotactic radiosurgery of brain metastases: preliminary results. Cureus 2017; 9 (12) e1987
  • 91 Huber PE, Hawighorst H, Fuss M, van Kaick G, Wannenmacher MF, Debus J. Transient enlargement of contrast uptake on MRI after linear accelerator (linac) stereotactic radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys 2001; 49 (05) 1339-1349
  • 92 Chao ST, Ahluwalia MS, Barnett GH. et al. Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol Biol Phys 2013; 87 (03) 449-457
  • 93 Babu R, Huang PP, Epstein F, Budzilovich GN. Late radiation necrosis of the brain: case report. J Neurooncol 1993; 17 (01) 37-42
  • 94 Miller JA, Bennett EE, Xiao R. et al. Association between radiation necrosis and tumor biology after stereotactic radiosurgery for brain metastasis. Int J Radiat Oncol Biol Phys 2016; 96 (05) 1060-1069
  • 95 Levin VA, Bidaut L, Hou P. et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 2011; 79 (05) 1487-1495
  • 96 Kohshi K, Imada H, Nomoto S, Yamaguchi R, Abe H, Yamamoto H. Successful treatment of radiation-induced brain necrosis by hyperbaric oxygen therapy. J Neurol Sci 2003; 209 (1-2): 115-117
  • 97 Ohguri T, Imada H, Kohshi K. et al. Effect of prophylactic hyperbaric oxygen treatment for radiation-induced brain injury after stereotactic radiosurgery of brain metastases. Int J Radiat Oncol Biol Phys 2007; 67 (01) 248-255
  • 98 Alexander III E, Moriarty TM, Loeffler JS. Radiosurgery for metastases. J Neurooncol 1996; 27 (03) 279-285
  • 99 Rao MS, Hargreaves EL, Khan AJ, Haffty BG, Danish SF. Magnetic resonance-guided laser ablation improves local control for postradiosurgery recurrence and/or radiation necrosis. Neurosurgery 2014; 74 (06) 658-667 , discussion 667
  • 100 Luther E, McCarthy D, Shah A. et al. Radical laser interstitial thermal therapy ablation volumes increase progression-free survival in biopsy-proven radiation necrosis. World Neurosurg 2020; 136: e646-e659
  • 101 Hong CS, Deng D, Vera A, Chiang VL. Laser-interstitial thermal therapy compared to craniotomy for treatment of radiation necrosis or recurrent tumor in brain metastases failing radiosurgery. J Neurooncol 2019; 142 (02) 309-317
  • 102 Rammo R, Asmaro K, Schultz L. et al. The safety of magnetic resonance imaging-guided laser interstitial thermal therapy for cerebral radiation necrosis. J Neurooncol 2018; 138 (03) 609-617
  • 103 Smith CJ, Myers CS, Chapple KM, Smith KA. Long-term follow-up of 25 cases of biopsy-proven radiation necrosis or post-radiation treatment effect treated with magnetic resonance-guided laser interstitial thermal therapy. Neurosurgery 2016; 79 (Suppl. 01) S59-S72
  • 104 Rammo R, Scarpace L, Nagaraja T, Lee I. MR-guided laser interstitial thermal therapy in the treatment of recurrent intracranial meningiomas. Lasers Surg Med 2019; 51 (03) 245-250
  • 105 Chaunzwa TL, Deng D, Leuthardt EC. et al. Laser thermal ablation for metastases failing radiosurgery: a multicentered retrospective study. Neurosurgery 2018; 82 (01) 56-63