CC BY-NC-ND 4.0 · Semin Reprod Med 2023; 41(05): 172-189
DOI: 10.1055/s-0043-1778017
Review Article

Exploring Immunome and Microbiome Interplay in Reproductive Health: Current Knowledge, Challenges, and Novel Diagnostic Tools

Prakash Lingasamy
1   Competence Centre on Health Technologies, Tartu, Estonia
,
Vijayachitra Modhukur
1   Competence Centre on Health Technologies, Tartu, Estonia
2   Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
,
Reet Mändar
1   Competence Centre on Health Technologies, Tartu, Estonia
3   Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
,
Andres Salumets
1   Competence Centre on Health Technologies, Tartu, Estonia
2   Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
4   Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
› Author Affiliations

Abstract

The dynamic interplay between the immunome and microbiome in reproductive health is a complex and rapidly advancing research field, holding tremendously vast possibilities for the development of reproductive medicine. This immunome–microbiome relationship influences the innate and adaptive immune responses, thereby affecting the onset and progression of reproductive disorders. However, the mechanisms governing these interactions remain elusive and require innovative approaches to gather more understanding. This comprehensive review examines the current knowledge on reproductive microbiomes across various parts of female reproductive tract, with special consideration of bidirectional interactions between microbiomes and the immune system. Additionally, it explores innate and adaptive immunity, focusing on immunoglobulin (Ig) A and IgM antibodies, their regulation, self-antigen tolerance mechanisms, and their roles in immune homeostasis. This review also highlights ongoing technological innovations in microbiota research, emphasizing the need for standardized detection and analysis methods. For instance, we evaluate the clinical utility of innovative technologies such as Phage ImmunoPrecipitation Sequencing (PhIP-Seq) and Microbial Flow Cytometry coupled to Next-Generation Sequencing (mFLOW-Seq). Despite ongoing advancements, we emphasize the need for further exploration in this field, as a deeper understanding of immunome–microbiome interactions holds promise for innovative diagnostic and therapeutic strategies for reproductive health, like infertility treatment and management of pregnancy.

Authors' Contribution

All authors helped to conceive the topic for the review. P.L. prepared the initial draft of the manuscript; all authors edited the manuscript and confirmed the last version of the manuscript.




Publication History

Article published online:
23 January 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Wang B, Yao M, Lv L, Ling Z, Li L. The human microbiota in health and disease. Engineering 2017; 3 (01) 71-82
  • 2 Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016; 14 (08) e1002533
  • 3 Brüls T, Weissenbach J. The human metagenome: our other genome?. Hum Mol Genet 2011; 20 (R2): R142-R148
  • 4 Donders GGG, Bellen G, Ruban KS. Abnormal vaginal microbiome is associated with severity of localized provoked vulvodynia. Role of aerobic vaginitis and Candida in the pathogenesis of vulvodynia. Eur J Clin Microbiol Infect Dis 2018; 37 (09) 1679-1685
  • 5 Onderdonk AB, Delaney ML, Fichorova RN. The human microbiome during bacterial vaginosis. Clin Microbiol Rev 2016; 29 (02) 223-238
  • 6 Sobel JD. Bacterial vaginosis. Annu Rev Med 2000; 51 (01) 349-356
  • 7 Huttenhower C, Gevers D, Knight R. et al; Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486 (7402) 207-214
  • 8 Wang N, Chen L, Yi K, Zhang B, Li C, Zhou X. The effects of microbiota on reproductive health: a review. Crit Rev Food Sci Nutr 2022; 1-22
  • 9 Chen C, Song X, Wei W. et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun 2017; 8 (01) 875
  • 10 Rowe M, Veerus L, Trosvik P, Buckling A, Pizzari T. The reproductive microbiome: an emerging driver of sexual selection, sexual conflict, mating systems, and reproductive isolation. Trends Ecol Evol 2020; 35 (03) 220-234
  • 11 Feng T, Liu Y. Microorganisms in the reproductive system and probiotic's regulatory effects on reproductive health. Comput Struct Biotechnol J 2022; 20: 1541-1553
  • 12 Schoenmakers S, Steegers-Theunissen R, Faas M. The matter of the reproductive microbiome. Obstet Med 2019; 12 (03) 107-115
  • 13 Tomaiuolo R, Veneruso I, Cariati F, D'Argenio V. Microbiota and human reproduction: the case of female infertility. High Throughput 2020; 9 (02) 12
  • 14 Quaranta G, Sanguinetti M, Masucci L. Fecal microbiota transplantation: a potential tool for treatment of human female reproductive tract diseases. Front Immunol 2019; 10: 2653
  • 15 Miles SM, Hardy BL, Merrell DSS. Investigation of the microbiota of the reproductive tract in women undergoing a total hysterectomy and bilateral salpingo-oopherectomy. Fertil Steril 2017; 107 (03) 813-820.e1
  • 16 Moreno I, Simon C. Deciphering the effect of reproductive tract microbiota on human reproduction. Reprod Med Biol 2018; 18 (01) 40-50
  • 17 Bhattacharya K, Dutta S, Sengupta P, Bagchi S. Reproductive tract microbiome and therapeutics of infertility. Middle East Fertil Soc J 2023; 28 (01) 11
  • 18 Garcia-Grau I, Perez-Villaroya D, Bau D. et al. Taxonomical and functional assessment of the endometrial microbiota in a context of recurrent reproductive failure: A case report. Pathogens 2019; 8 (04) 4-6
  • 19 Muraoka A, Suzuki M, Hamaguchi T. et al. Fusobacterium infection facilitates the development of endometriosis through the phenotypic transition of endometrial fibroblasts. Sci Transl Med 2023; 15 (700) eadd1531
  • 20 Payne MS, Newnham JP, Doherty DA. et al. A specific bacterial DNA signature in the vagina of Australian women in midpregnancy predicts high risk of spontaneous preterm birth (the Predict1000 study). Am J Obstet Gynecol 2021; 224 (02) 206.e1-206.e23
  • 21 France MT, Ma B, Gajer P. et al. VALENCIA: a nearest centroid classification method for vaginal microbial communities based on composition. Microbiome 2020; 8 (01) 166
  • 22 Britto AMA, Siqueira JD, Curty G. et al. Microbiome analysis of Brazilian women cervix reveals specific bacterial abundance correlation to RIG-like receptor gene expression. Front Immunol 2023; 14: 1147950
  • 23 Ravel J, Gajer P, Abdo Z. et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 2011; 108 (Suppl 1, Suppl 1): 4680-4687
  • 24 Cocomazzi G, De Stefani S, Del Pup L. et al. The impact of the female genital microbiota on the outcome of assisted reproduction treatments. Microorganisms 2023; 11 (06) 1443
  • 25 Lehtoranta L, Ala-Jaakkola R, Laitila A, Maukonen J. Healthy vaginal microbiota and influence of probiotics across the female life span. Front Microbiol 2022; 13: 819958
  • 26 Mändar R, Punab M, Borovkova N. et al. Complementary seminovaginal microbiome in couples. Res Microbiol 2015; 166 (05) 440-447
  • 27 O'Hanlon DE, Moench TR, Cone RA. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PLoS ONE 2013; 8 (11) e80074
  • 28 Younes JA, Lievens E, Hummelen R, van der Westen R, Reid G, Petrova MI. Women and their microbes: the unexpected friendship. Trends Microbiol 2018; 26 (01) 16-32
  • 29 Delgado-Diaz DJ, Tyssen D, Hayward JA, Gugasyan R, Hearps AC, Tachedjian G. Distinct immune responses elicited from cervicovaginal epithelial cells by lactic acid and short chain fatty acids associated with optimal and non-optimal vaginal microbiota. Front Cell Infect Microbiol 2020; 9: 446
  • 30 Adapen C, Réot L, Menu E. Role of the human vaginal microbiota in the regulation of inflammation and sexually transmitted infection acquisition: contribution of the non-human primate model to a better understanding?. Front Reprod Health 2022; 4: 992176
  • 31 Coleman JS, Gaydos CA. Molecular diagnosis of bacterial vaginosis: an update. J Clin Microbiol 2018; 56 (09) DOI: 10.1128/JCM.00342-18.
  • 32 Koort K, Sõsa K, Türk S. et al. Lactobacillus crispatus-dominated vaginal microbiome and Acinetobacter-dominated seminal microbiome support beneficial ART outcome. Acta Obstet Gynecol Scand 2023; 102 (07) 921-934
  • 33 Kumar L, Dwivedi M, Jain N. et al. The female reproductive tract microbiota: friends and foe. Life (Basel) 2023; 13 (06) 1313
  • 34 Ravel J, Moreno I, Simón C. Bacterial vaginosis and its association with infertility, endometritis, and pelvic inflammatory disease. Am J Obstet Gynecol 2021; 224 (03) 251-257
  • 35 Štšepetova J, Baranova J, Simm J. et al. The complex microbiome from native semen to embryo culture environment in human in vitro fertilization procedure. Reprod Biol Endocrinol 2020; 18 (01) 3 DOI: 10.1186/s12958-019-0562-z.
  • 36 Yan C, Hong F, Xin G, Duan S, Deng X, Xu Y. Alterations in the vaginal microbiota of patients with preterm premature rupture of membranes. Front Cell Infect Microbiol 2022; 12: 858732
  • 37 Fettweis JM, Serrano MG, Brooks JP. et al. The vaginal microbiome and preterm birth. Nat Med 2019; 25 (06) 1012-1021
  • 38 Nguyen ATC, Le Nguyen NT, Hoang TTA. et al. Aerobic vaginitis in the third trimester and its impact on pregnancy outcomes. BMC Pregnancy Childbirth 2022; 22 (01) 432
  • 39 Barczyński B, Frąszczak K, Grywalska E, Kotarski J, Korona-Głowniak I. Vaginal and cervical microbiota composition in patients with endometrial cancer. Int J Mol Sci 2023; 24 (09) 8266
  • 40 Bednarska-Czerwińska A, Morawiec E, Zmarzły N. et al. Dynamics of microbiome changes in the endometrium and uterine cervix during embryo implantation: a comparative analysis. Med Sci Monit 2023; 29: e941289
  • 41 Dong M, Dong Y, Bai J. et al. Interactions between microbiota and cervical epithelial, immune, and mucus barrier. Front Cell Infect Microbiol 2023; 13 (February): 1124591
  • 42 Liang J, Li M, Zhang L. et al. Analysis of the microbiota composition in the genital tract of infertile patients with chronic endometritis or endometrial polyps. Front Cell Infect Microbiol 2023; 13: 1125640
  • 43 Tuominen H, Rautava S, Syrjänen S, Collado MC, Rautava J. HPV infection and bacterial microbiota in the placenta, uterine cervix and oral mucosa. Sci Rep 2018; 8 (01) 9787
  • 44 Payne MS, Ireland DJ, Watts R. et al. Ureaplasma parvum genotype, combined vaginal colonisation with Candida albicans, and spontaneous preterm birth in an Australian cohort of pregnant women. BMC Pregnancy Childbirth 2016; 16 (01) 312
  • 45 Parnell LA, Briggs CM, Mysorekar IU. Maternal microbiomes in preterm birth: recent progress and analytical pipelines. Semin Perinatol 2017; 41 (07) 392-400
  • 46 Anahtar MN, Gootenberg DB, Mitchell CM, Kwon DS. Cervicovaginal microbiota and reproductive health: the virtue of simplicity. Cell Host Microbe 2018; 23 (02) 159-168
  • 47 Mitchell CM, Haick A, Nkwopara E. et al. Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women. Am J Obstet Gynecol 2015; 212 (05) 611.e1-611.e9
  • 48 Koedooder R, Mackens S, Budding A. et al. Identification and evaluation of the microbiome in the female and male reproductive tracts. Hum Reprod Update 2019; 25 (03) 298-325
  • 49 Moreno I, Codoñer FM, Vilella F. et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol 2016; 215 (06) 684-703
  • 50 Molina NM, Sola-Leyva A, Saez-Lara MJ. et al. New opportunities for endometrial health by modifying uterine microbial composition: present or future?. Biomolecules 2020; 10 (04) 593
  • 51 Molina NM, Sola-Leyva A, Haahr T. et al. Analysing endometrial microbiome: methodological considerations and recommendations for good practice. Hum Reprod 2021; 36 (04) 859-879
  • 52 Sola-Leyva A, Andrés-León E, Molina NM. et al. Mapping the entire functionally active endometrial microbiota. Hum Reprod 2021; 36 (04) 1021-1031
  • 53 Franasiak JM, Werner MD, Juneau CR. et al. Endometrial microbiome at the time of embryo transfer: next-generation sequencing of the 16S ribosomal subunit. J Assist Reprod Genet 2016; 33 (01) 129-136
  • 54 Moreno I, Garcia-Grau I, Perez-Villaroya D. et al. Endometrial microbiota composition is associated with reproductive outcome in infertile patients. Microbiome 2022; 10 (01) 1 DOI: 10.1186/s40168-021-01184-w.
  • 55 Diaz-Martínez MDC, Bernabeu A, Lledó B. et al. Impact of the vaginal and endometrial microbiome pattern on assisted reproduction outcomes. J Clin Med 2021; 10 (18) 4063
  • 56 Wee BA, Thomas M, Sweeney EL. et al. A retrospective pilot study to determine whether the reproductive tract microbiota differs between women with a history of infertility and fertile women. Aust N Z J Obstet Gynaecol 2018; 58 (03) 341-348
  • 57 Hiraoka T, Osuga Y, Hirota Y. Current perspectives on endometrial receptivity: A comprehensive overview of etiology and treatment. J Obstet Gynaecol Res 2023; 49 (10) 2397-2409
  • 58 Lüll K, Saare M, Peters M. et al. Differences in microbial profile of endometrial fluid and tissue samples in women with in vitro fertilization failure are driven by Lactobacillus abundance. Acta Obstet Gynecol Scand 2022; 101 (02) 212-220
  • 59 Riganelli L, Iebba V, Piccioni M. et al. Structural variations of vaginal and endometrial microbiota: hints on female infertility. Front Cell Infect Microbiol 2020; 10: 350
  • 60 Ojosnegros S, Seriola A, Godeau AL, Veiga A. Embryo implantation in the laboratory: an update on current techniques. Hum Reprod Update 2021; 27 (03) 501-530
  • 61 Silpe JE, Balskus EP. Deciphering human microbiota-host chemical interactions. ACS Cent Sci 2021; 7 (01) 20-29
  • 62 Belizário JE, Napolitano M. Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front Microbiol 2015; 6 (Oct): 1050
  • 63 Purcell RV, Pearson J, Aitchison A, Dixon L, Frizelle FA, Keenan JI. Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS One 2017; 12 (02) e0171602
  • 64 Pelzer ES, Willner D, Buttini M, Hafner LM, Theodoropoulos C, Huygens F. The fallopian tube microbiome: implications for reproductive health. Oncotarget 2018; 9 (30) 21541-21551
  • 65 Peric A, Weiss J, Vulliemoz N, Baud D, Stojanov M. Bacterial colonization of the female upper genital tract. Int J Mol Sci 2019; 20 (14) 3405
  • 66 Canha-Gouveia A, Pérez-Prieto I, Rodríguez CM. et al. The female upper reproductive tract harbors endogenous microbial profiles. Front Endocrinol 2023; 14: 1096050 DOI: 10.3389/fendo.2023.1096050.
  • 67 Mondal AS, Sharma R, Trivedi N. Bacterial vaginosis: a state of microbial dysbiosis. Med Microecology 2023; 16: 100082
  • 68 Wasfi R, Abd El-Rahman OA, Zafer MM, Ashour HM. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J Cell Mol Med 2018; 22 (03) 1972-1983
  • 69 Banerjee S, Tian T, Wei Z. et al. The ovarian cancer oncobiome. Oncotarget 2017; 8 (22) 36225-36245
  • 70 Wang X, Zheng Y, Chen X. et al. 2bRAD-M reveals the difference in microbial distribution between cancerous and benign ovarian tissues. Front Microbiol 2023; 14: 1231354
  • 71 Zhou B, Sun C, Huang J. et al. The biodiversity composition of microbiome in ovarian carcinoma patients. Sci Rep 2019; 9 (01) 1691
  • 72 Païssé S, Valle C, Servant F. et al. Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion 2016; 56 (05) 1138-1147
  • 73 Wang Q, Zhao L, Han L. et al. The differential distribution of bacteria between cancerous and noncancerous ovarian tissues in situ. J Ovarian Res 2020; 13 (01) 8
  • 74 Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med 2014; 6 (237) 237ra65
  • 75 Kennedy KM, de Goffau MC, Perez-Muñoz ME. et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 2023; 613 (7945) 639-649
  • 76 Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome 2017; 5 (01) 48
  • 77 Prince AL, Ma J, Kannan PS. et al. The placental membrane microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis. Am J Obstet Gynecol 2016; 214 (05) 627.e1-627.e16
  • 78 de Goffau MC, Lager S, Sovio U. et al. Human placenta has no microbiome but can contain potential pathogens. Nature 2019; 572 (7769) 329-334
  • 79 Farooqi HMU, Kim KH, Kausar F, Muhammad J, Bukhari H, Choi KH. Frequency and molecular characterization of Staphylococcus aureus from placenta of mothers with term and preterm deliveries. Life (Basel) 2022; 12 (02) 257
  • 80 Kuperman AA, Zimmerman A, Hamadia S. et al. Deep microbial analysis of multiple placentas shows no evidence for a placental microbiome. BJOG 2020; 127 (02) 159-169
  • 81 Parhi L, Abed J, Shhadeh A. et al. Placental colonization by Fusobacterium nucleatum is mediated by binding of the Fap2 lectin to placentally displayed Gal-GalNAc. Cell Rep 2022; 38 (12) 110537
  • 82 Sterpu I, Fransson E, Hugerth LW. et al. No evidence for a placental microbiome in human pregnancies at term. Am J Obstet Gynecol 2021; 224 (03) 296.e1-296.e23
  • 83 Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014; 157 (01) 121-141
  • 84 Hou K, Wu ZX, Chen XY. et al. Microbiota in health and diseases. Signal Transduct Target Ther 2022; 7 (01) 135
  • 85 Lee YK, Mazmanian SK. Has the microbiota played a critical role in the evolution of the adaptive immune system?. Science 2010; 330 (6012) 1768-1773
  • 86 Donald K, Petersen C, Turvey SE, Finlay BB, Azad MB. Secretory IgA: linking microbes, maternal health, and infant health through human milk. Cell Host Microbe 2022; 30 (05) 650-659
  • 87 Bonney EA. Immune regulation in pregnancy: a matter of perspective?. Obstet Gynecol Clin North Am 2016; 43 (04) 679-698
  • 88 Al-Nasiry S, Ambrosino E, Schlaepfer M. et al. The interplay between reproductive tract microbiota and immunological system in human reproduction. Front Immunol 2020; 11: 378
  • 89 Gholiof M, Adamson-De Luca E, Wessels JM. The female reproductive tract microbiotas, inflammation, and gynecological conditions. Front Reprod Health 2022; 4: 963752
  • 90 Proctor LM, Creasy HH, Fettweis JM. et al; Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project. Nature 2019; 569 (7758) 641-648
  • 91 Breedveld AC, Schuster HJ, van Houdt R. et al. Enhanced IgA coating of bacteria in women with Lactobacillus crispatus-dominated vaginal microbiota. Microbiome 2022; 10 (01) 15
  • 92 Jin J, Gao L, Zou X. et al. Gut dysbiosis promotes preeclampsia by regulating macrophages and trophoblasts. Circ Res 2022; 131 (06) 492-506
  • 93 Tao Z, Chen Y, He F. et al. Alterations in the gut microbiome and metabolisms in pregnancies with fetal growth restriction. Microbiol Spectr 2023; 11 (03) DOI: 10.1128/spectrum.00076-23.
  • 94 Hasain Z, Mokhtar NM, Kamaruddin NA. et al. Gut microbiota and gestational diabetes mellitus: a review of host-gut microbiota interactions and their therapeutic potential. Front Cell Infect Microbiol 2020; 10: 188
  • 95 Mitchell C, Marrazzo J. Bacterial vaginosis and the cervicovaginal immune response. Am J Reprod Immunol 2014; 71 (06) 555-563
  • 96 Horne AW, Stock SJ, King AE. Innate immunity and disorders of the female reproductive tract. Reproduction 2008; 135 (06) 739-749
  • 97 Witkin SS, Linhares IM, Giraldo P. Bacterial flora of the female genital tract: function and immune regulation. Best Pract Res Clin Obstet Gynaecol 2007; 21 (03) 347-354
  • 98 Anahtar MN, Byrne EH, Doherty KE. et al. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity 2015; 42 (05) 965-976
  • 99 Mor G, Aldo P, Alvero AB. The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol 2017; 17 (08) 469-482
  • 100 Nasu K, Narahara H. Pattern recognition via the toll-like receptor system in the human female genital tract. Mediators Inflamm 2010; 2010: 976024
  • 101 Kogut MH, Lee A, Santin E. Microbiome and pathogen interaction with the immune system. Poult Sci 2020; 99 (04) 1906-1913
  • 102 Agostinis C, Mangogna A, Bossi F, Ricci G, Kishore U, Bulla R. Uterine immunity and microbiota: a shifting paradigm. Front Immunol 2019; 10 (OCT): 2387
  • 103 Atay S, Gercel-Taylor C, Suttles J, Mor G, Taylor DD. Trophoblast-derived exosomes mediate monocyte recruitment and differentiation. Am J Reprod Immunol 2011; 65 (01) 65-77
  • 104 Villa P, Cipolla C, D'Ippolito S. et al. The interplay between immune system and microbiota in gynecological diseases: a narrative review. Eur Rev Med Pharmacol Sci 2020; 24 (10) 5676-5690
  • 105 Arnold KB, Burgener A, Birse K. et al. Increased levels of inflammatory cytokines in the female reproductive tract are associated with altered expression of proteases, mucosal barrier proteins, and an influx of HIV-susceptible target cells. Mucosal Immunol 2016; 9 (01) 194-205
  • 106 He Y, Fu L, Li Y. et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell Metab 2021; 33 (05) 988-1000.e7
  • 107 Carvalho FA, Aitken JD, Vijay-Kumar M, Gewirtz AT. Toll-like receptor-gut microbiota interactions: perturb at your own risk!. Annu Rev Physiol 2012; 74 (01) 177-198
  • 108 Baker JM, Chase DM, Herbst-Kralovetz MM. Uterine microbiota: residents, tourists, or invaders?. Front Immunol 2018; 9 (MAR): 208
  • 109 Maslowski KM, Vieira AT, Ng A. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009; 461 (7268) 1282-1286
  • 110 Ruff WE, Greiling TM, Kriegel MA. Host-microbiota interactions in immune-mediated diseases. Nat Rev Microbiol 2020; 18 (09) 521-538
  • 111 Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 2020; 30 (06) 492-506
  • 112 Mu Q, Tavella VJ, Luo XM. Role of Lactobacillus reuteri in human health and diseases. Front Microbiol 2018; 9 (APR): 757
  • 113 Maloy KJ, Powrie F. Regulatory T cells in the control of immune pathology. Nat Immunol 2001; 2 (09) 816-822
  • 114 Ssemaganda A, Cholette F, Perner M. et al. Endocervical regulatory T cells are associated with decreased genital inflammation and lower HIV target cell abundance. Front Immunol 2021; 12: 726472
  • 115 Coombes JL, Siddiqui KRR, Arancibia-Cárcamo CV. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J Exp Med 2007; 204 (08) 1757-1764
  • 116 Duluc D, Gannevat J, Anguiano E. et al. Functional diversity of human vaginal APC subsets in directing T-cell responses. Mucosal Immunol 2013; 6 (03) 626-638
  • 117 Monin L, Whettlock EM, Male V. Immune responses in the human female reproductive tract. Immunology 2020; 160 (02) 106-115
  • 118 Frew L, Stock SJ. Antimicrobial peptides and pregnancy. Reproduction 2011; 141 (06) 725-735
  • 119 Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 2015; 13 (05) 269-284
  • 120 Sterlin D, Fadlallah J, Slack E, Gorochov G. The antibody/microbiota interface in health and disease. Mucosal Immunol 2020; 13 (01) 3-11
  • 121 Chen K, Magri G, Grasset EK, Cerutti A. Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA. Nat Rev Immunol 2020; 20 (07) 427-441
  • 122 Torcia MG. Interplay among vaginal microbiome, immune response and sexually transmitted viral infections. Int J Mol Sci 2019; 20 (02) 266
  • 123 Bulmer JN, Williams PJ, Lash GE. Immune cells in the placental bed. Int J Dev Biol 2010; 54 (2-3): 281-294
  • 124 Abelius MS, Janefjord C, Ernerudh J. et al. The placental immune milieu is characterized by a Th2- and anti-inflammatory transcription profile, regardless of maternal allergy, and associates with neonatal immunity. Am J Reprod Immunol 2015; 73 (05) 445-459
  • 125 Muzzio DO, Soldati R, Ehrhardt J. et al. B cell development undergoes profound modifications and adaptations during pregnancy in mice. Biol Reprod 2014; 91 (05) 115
  • 126 Lee SK, Kim CJ, Kim DJ, Kang JH. Immune cells in the female reproductive tract. Immune Netw 2015; 15 (01) 16-26
  • 127 Zhang Y, Liu Z, Sun H. Fetal-maternal interactions during pregnancy: a ‘three-in-one’ perspective. Front Immunol 2023; 14: 1198430
  • 128 Ding J, Maxwell A, Adzibolosu N. et al. Mechanisms of immune regulation by the placenta: role of type I interferon and interferon-stimulated genes signaling during pregnancy. Immunol Rev 2022; 308 (01) 9-24
  • 129 Wira CR, Fahey JV, Rodriguez-Garcia M, Shen Z, Patel MV. Regulation of mucosal immunity in the female reproductive tract: the role of sex hormones in immune protection against sexually transmitted pathogens. Am J Reprod Immunol 2014; 72 (02) 236-258
  • 130 Nagamatsu T, Schust DJ. The immunomodulatory roles of macrophages at the maternal-fetal interface. Reprod Sci 2010; 17 (03) 209-218
  • 131 Harding CV, Ramachandra L, Wick MJ. Interaction of bacteria with antigen presenting cells: influences on antigen presentation and antibacterial immunity. Curr Opin Immunol 2003; 15 (01) 112-119
  • 132 Barnea ER, Kirk D, Todorova K, McElhinney J, Hayrabedyan S, Fernández N. PIF direct immune regulation: blocks mitogen-activated PBMCs proliferation, promotes TH2/TH1 bias, independent of Ca(2+). Immunobiology 2015; 220 (07) 865-875
  • 133 Cauci S. Vaginal immunity in bacterial vaginosis. Curr Infect Dis Rep 2004; 6 (06) 450-456
  • 134 Wira CR, Fahey JV, Sentman CL, Pioli PA, Shen L. Innate and adaptive immunity in female genital tract: cellular responses and interactions. Immunol Rev 2005; 206 (01) 306-335
  • 135 Wines BD, Hogarth PM. IgA receptors in health and disease. Tissue Antigens 2006; 68 (02) 103-114
  • 136 Takeuchi T, Ohno H. IgA in human health and diseases: potential regulator of commensal microbiota. Front Immunol 2022; 13: 1024330
  • 137 Breedveld A, van Egmond M. IgA and FcαRI: pathological roles and therapeutic opportunities. Front Immunol 2019; 10 (Mar): 553
  • 138 Macpherson AJ, Yilmaz B, Limenitakis JP, Ganal-Vonarburg SC. IgA function in relation to the intestinal microbiota. Annu Rev Immunol 2018; 36: 359-381
  • 139 Okai S, Usui F, Yokota S. et al. High-affinity monoclonal IgA regulates gut microbiota and prevents colitis in mice. Nat Microbiol 2016; 1 (09) 16103
  • 140 Bunker JJ, Erickson SA, Flynn TM. et al. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 2017; 358 (6361) eaan6619
  • 141 Sterlin D, Fadlallah J, Adams O. et al. Human IgA binds a diverse array of commensal bacteria. J Exp Med 2020; 217 (03) e20181635
  • 142 Mantis NJ, Rol N, Corthésy B. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 2011; 4 (06) 603-611
  • 143 Catanzaro JR, Strauss JD, Bielecka A. et al. IgA-deficient humans exhibit gut microbiota dysbiosis despite secretion of compensatory IgM. Sci Rep 2019; 9 (01) 13574
  • 144 Fadlallah J, El Kafsi H, Sterlin D. et al. Microbial ecology perturbation in human IgA deficiency. Sci Transl Med 2018; 10 (439) eaan1217
  • 145 Johansen FE, Kaetzel CS. Regulation of the polymeric immunoglobulin receptor and IgA transport: new advances in environmental factors that stimulate pIgR expression and its role in mucosal immunity. Mucosal Immunol 2011; 4 (06) 598-602
  • 146 Ramsland PA, Willoughby N, Trist HM. et al. Structural basis for evasion of IgA immunity by Staphylococcus aureus revealed in the complex of SSL7 with Fc of human IgA1. Proc Natl Acad Sci U S A 2007; 104 (38) 15051-15056
  • 147 Safaeian M, Falk RT, Rodriguez AC. et al. Factors associated with fluctuations in IgA and IgG levels at the cervix during the menstrual cycle. J Infect Dis 2009; 199 (03) 455-463
  • 148 Jones K, Savulescu AF, Brombacher F, Hadebe S. Immunoglobulin M in health and diseases: How far have we come and what next?. Front Immunol 2020; 11: 595535
  • 149 Flajnik MF, Kasahara M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 2010; 11 (01) 47-59
  • 150 Blandino R, Baumgarth N. Secreted IgM: new tricks for an old molecule. J Leukoc Biol 2019; 106 (05) 1021-1034
  • 151 Litvack ML, Post M, Palaniyar N. IgM promotes the clearance of small particles and apoptotic microparticles by macrophages. PLoS One 2011; 6 (03) e17223
  • 152 Ehrenstein MR, Notley CA. The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol 2010; 10 (11) 778-786
  • 153 Racine R, Winslow GM. IgM in microbial infections: taken for granted?. Immunol Lett 2009; 125 (02) 79-85
  • 154 Grönwall C, Vas J, Silverman GJ. Protective roles of natural IgM antibodies. Front Immunol 2012; 3 (Apr): 66
  • 155 Cooper NR, Nemerow GR, Mayes JT. Methods to detect and quantitate complement activation. Springer Semin Immunopathol 1983; 6 (2-3): 195-212
  • 156 Gupta S, Gupta A. Selective IgM deficiency-an underestimated primary immunodeficiency. Front Immunol 2017; 8 (SEP): 1056
  • 157 Magri G, Comerma L, Pybus M. et al. Human secretory IgM emerges from plasma cells clonally related to gut memory b cells and targets highly diverse commensals. Immunity 2017; 47 (01) 118-134.e8
  • 158 Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H, Zinkernagel RM. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 2000; 288 (5474) 2222-2226
  • 159 Li Y, Shen H, Zhang R. et al. Immunoglobulin M perception by FcμR. Nature 2023; 615 (7954) 907-912
  • 160 Shibuya A, Sakamoto N, Shimizu Y. et al. Fc α/μ receptor mediates endocytosis of IgM-coated microbes. Nat Immunol 2000; 1 (05) 441-446
  • 161 Devito C, Ellegård R, Falkeborn T. et al. Human IgM monoclonal antibodies block HIV-transmission to immune cells in cervico-vaginal tissues and across polarized epithelial cells in vitro. Sci Rep 2018; 8 (01) 10180
  • 162 Kirkland D, Benson A, Mirpuri J. et al. B cell-intrinsic MyD88 signaling prevents the lethal dissemination of commensal bacteria during colonic damage. Immunity 2012; 36 (02) 228-238
  • 163 Devito C, Broliden K, Kaul R. et al. Mucosal and plasma IgA from HIV-1-exposed uninfected individuals inhibit HIV-1 transcytosis across human epithelial cells. J Immunol 2000; 165 (09) 5170-5176
  • 164 Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res 2010; 20 (01) 34-50
  • 165 Kanda N, Tamaki K. Estrogen enhances immunoglobulin production by human PBMCs. J Allergy Clin Immunol 1999; 103 (2, Pt 1): 282-288
  • 166 So NSY, Ostrowski MA, Gray-Owen SD. Vigorous response of human innate functioning IgM memory B cells upon infection by Neisseria gonorrhoeae . J Immunol 2012; 188 (08) 4008-4022
  • 167 Rodriguez-Garcia M, Patel MV, Shen Z, Wira CR. The impact of aging on innate and adaptive immunity in the human female genital tract. Aging Cell 2021; 20 (05) e13361
  • 168 Mestecky J, Fultz PN. Mucosal immune system of the human genital tract. J Infect Dis 1999; 179 (Suppl. 03) S470-S474
  • 169 Chan D, Bennett PR, Lee YS. et al. Microbial-driven preterm labour involves crosstalk between the innate and adaptive immune response. Nat Commun 2022; 13 (01) 975
  • 170 Pudney J, Quayle AJ, Anderson DJ. Immunological microenvironments in the human vagina and cervix: mediators of cellular immunity are concentrated in the cervical transformation zone. Biol Reprod 2005; 73 (06) 1253-1263
  • 171 Klemola T. Immunohistochemical findings in the intestine of IgA-deficient persons: number of intraepithelial T lymphocytes is increased. J Pediatr Gastroenterol Nutr 1988; 7 (04) 537-543
  • 172 Bunker JJ, Flynn TM, Koval JC. et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity 2015; 43 (03) 541-553
  • 173 Bunker JJ, Bendelac A. IgA responses to microbiota. Immunity 2018; 49 (02) 211-224
  • 174 Dalal SR, Chang EB. The microbial basis of inflammatory bowel diseases. J Clin Invest 2014; 124 (10) 4190-4196
  • 175 Kanai T, Kawamura T, Dohi T. et al. TH1/TH2-mediated colitis induced by adoptive transfer of CD4+CD45RB high T lymphocytes into nude mice. Inflamm Bowel Dis 2006; 12 (02) 89-99
  • 176 Uo M, Hisamatsu T, Miyoshi J. et al. Mucosal CXCR4+ IgG plasma cells contribute to the pathogenesis of human ulcerative colitis through FcγR-mediated CD14 macrophage activation. Gut 2013; 62 (12) 1734-1744
  • 177 Chan Y, Fornace K, Wu L. et al. Determining seropositivity—a review of approaches to define population seroprevalence when using multiplex bead assays to assess burden of tropical diseases. PLoS Negl Trop Dis 2021; 15 (06) e0009457
  • 178 Dowlatshahi S, Shabani E, Abdekhodaie MJ. Serological assays and host antibody detection in coronavirus-related disease diagnosis. Arch Virol 2021; 166 (03) 715-731
  • 179 Durazzi F, Sala C, Castellani G, Manfreda G, Remondini D, De Cesare A. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. Sci Rep 2021; 11 (01) 3030
  • 180 López-Aladid R, Fernández-Barat L, Alcaraz-Serrano V. et al. Determining the most accurate 16S rRNA hypervariable region for taxonomic identification from respiratory samples. Sci Rep 2023; 13 (01) 3974
  • 181 Brown EL, Essigmann HT, Hoffman KL. et al. Impact of diabetes on the gut and salivary IgA microbiomes. Infect Immun 2020; 88 (12) 1-12
  • 182 Jackson MA, Pearson C, Ilott NE. et al. Accurate identification and quantification of commensal microbiota bound by host immunoglobulins. Microbiome 2021; 9 (01) 33
  • 183 Morton JT, Marotz C, Washburne A. et al. Establishing microbial composition measurement standards with reference frames. Nat Commun 2019; 10 (01) 2719
  • 184 Palm NW, de Zoete MR, Cullen TW. et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 2014; 158 (05) 1000-1010
  • 185 Silverman MA, Green JL. Insight into host-microbe interactions using microbial flow cytometry coupled to next-generation sequencing. J Pediatric Infect Dis Soc 2021; 10 (Suppl. 04) S106-S111
  • 186 Bos NA, Bun JCAM, Popma SH. et al. Monoclonal immunoglobulin A derived from peritoneal B cells is encoded by both germ line and somatically mutated VH genes and is reactive with commensal bacteria. Infect Immun 1996; 64 (02) 616-623
  • 187 Kroese FGM, de Waard R, Bos NA. B-1 cells and their reactivity with the murine intestinal microflora. Semin Immunol 1996; 8 (01) 11-18
  • 188 van der Waaij LA, Mesander G, Limburg PC, van der Waaij D. Direct flow cytometry of anaerobic bacteria in human feces. Cytometry 1994; 16 (03) 270-279
  • 189 Moor K, Fadlallah J, Toska A. et al. Analysis of bacterial-surface-specific antibodies in body fluids using bacterial flow cytometry. Nat Protoc 2016; 11 (08) 1531-1553
  • 190 Conrey PE, Denu L, O'Boyle KC. et al. IgA deficiency destabilizes homeostasis toward intestinal microbes and increases systemic immune dysregulation. Sci Immunol 2023; 8 (83) eade2335
  • 191 Wilmore JR, Gaudette BT, Gomez Atria D. et al. Commensal microbes induce serum IgA responses that protect against polymicrobial sepsis. Cell Host Microbe 2018; 23 (03) 302-311.e3
  • 192 Kan B, Razzaghian HR, Lavoie PM. An immunological perspective on neonatal sepsis. Trends Mol Med 2016; 22 (04) 290-302
  • 193 Emerson JB, Adams RI, Román CMB. et al. Schrödinger's microbes: tools for distinguishing the living from the dead in microbial ecosystems. Microbiome 2017; 5 (01) 86
  • 194 Lambrecht J, Schattenberg F, Harms H, Mueller S. Characterizing microbiome dynamics - flow cytometry based workflows from pure cultures to natural communities. J Vis Exp 2018; 2018 (137) 58033
  • 195 Koch MA, Reiner GL, Lugo KA. et al. Maternal IgG and IgA antibodies dampen mucosal T helper cell responses in early life. Cell 2016; 165 (04) 827-841
  • 196 Doron I, Leonardi I, Li XV. et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell 2021; 184 (04) 1017-1031.e14
  • 197 Kau AL, Planer JD, Liu J. et al. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci Transl Med 2015; 7 (276) 276ra24
  • 198 Tiu CK, Zhu F, Wang LF, de Alwis R. Phage ImmunoPrecipitation Sequencing (PhIP-Seq): the promise of high throughput serology. Pathogens 2022; 11 (05) 568
  • 199 Lingasamy P, Tobi A, Haugas M. et al. Bi-specific tenascin-C and fibronectin targeted peptide for solid tumor delivery. Biomaterials 2019; 219: 119373
  • 200 Lingasamy P. Development of Multitargeted Tumor Penetrating Peptides. University of Tartu; 2020 http://hdl.handle.net/10062/70738
  • 201 Larman HB, Zhao Z, Laserson U. et al. Autoantigen discovery with a synthetic human peptidome. Nat Biotechnol 2011; 29 (06) 535-541
  • 202 Mohan D, Wansley DL, Sie BM. et al. PhIP-Seq characterization of serum antibodies using oligonucleotide-encoded peptidomes. Nat Protoc 2018; 13 (09) 1958-1978
  • 203 Larman HB, Laserson U, Querol L. et al. PhIP-Seq characterization of autoantibodies from patients with multiple sclerosis, type 1 diabetes and rheumatoid arthritis. J Autoimmun 2013; 43: 1-9
  • 204 Román-Meléndez GD, Monaco DR, Montagne JM. et al. Citrullination of a phage-displayed human peptidome library reveals the fine specificities of rheumatoid arthritis-associated autoantibodies. EBioMedicine 2021; 71: 103506
  • 205 Xu GJ, Kula T, Xu Q. et al. Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome. Science 2015; 348 (6239) aaa0698
  • 206 Cantarelli C, Jarque M, Angeletti A. et al. A comprehensive phenotypic and functional immune analysis unravels circulating anti-phospholipase A2 receptor antibody secreting cells in membranous nephropathy patients. Kidney Int Rep 2020; 5 (10) 1764-1776
  • 207 Angkeow JW, Monaco DR, Chen A. et al. Phage display of environmental protein toxins and virulence factors reveals the prevalence, persistence, and genetics of antibody responses. Immunity 2022; 55 (06) 1051-1066.e4
  • 208 Venkataraman T, Swaminathan H, Arze CA. et al. Comprehensive profiling of antibody responses to the human anellome using programmable phage display. Cell Rep 2022; 41 (12) 111754
  • 209 Vogl T, Klompus S, Leviatan S. et al. Population-wide diversity and stability of serum antibody epitope repertoires against human microbiota. Nat Med 2021; 27 (08) 1442-1450
  • 210 Leviatan S, Vogl T, Klompus S, Kalka IN, Weinberger A, Segal E. Allergenic food protein consumption is associated with systemic IgG antibody responses in non-allergic individuals. Immunity 2022; 55 (12) 2454-2469.e6
  • 211 Andreu-Sánchez S, Bourgonje AR, Vogl T. et al; Lifelines Cohort Study. Phage display sequencing reveals that genetic, environmental, and intrinsic factors influence variation of human antibody epitope repertoire. Immunity 2023; 56 (06) 1376-1392.e8
  • 212 Bourgonje AR, Andreu-Sánchez S, Vogl T. et al. Phage-display immunoprecipitation sequencing of the antibody epitope repertoire in inflammatory bowel disease reveals distinct antibody signatures. Immunity 2023; 56 (06) 1393-1409.e6