Ernährung & Medizin 2018; 33(01): 13-19
DOI: 10.1055/s-0044-101058
Wissen
© Haug Verlag in Georg Thieme Verlag KG Stuttgart · New York

Aktuelle Bewertung von Homocystein als Risikofaktor für Demenz

Rima Obeid
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
19. März 2018 (online)

Zusammenfassung

Mit zunehmendem Lebensalter steigen die Homocysteinwerte im Blutplasma, unter anderem bedingt durch einen Mangel an B-Vitaminen wie Folat und den Vitaminen B6 und B12. In jüngeren Studien erwies sich die Homocysteinämie als ein modifizierbarer Risikofaktor für Demenz. Eine Senkung des Plasma-Homocysteins bei Patienten mit leichter kognitiver Dysfunktion und mehr als 14 µmol/l Gesamthomocystein könnte eventuell den kognitiven Leistungsabbau bremsen.

 
  • Literatur

  • 1 Finkelstein JD. Methionine metabolism in mammals. J Nutr Biochem 1990; 1: 228-237
  • 2 Herrmann W, Quast S, Ullrich M. et al. Hyperhomocysteinemia in high-aged subjects: relation of B-vitamins, folic acid, renal function, and the methylenetetrahydrofolate reductase mutation. Atherosclerosis 1999; 144: 91-101
  • 3 Obeid R, Kuhlmann MK, Kohler H. et al. Response of homocysteine, cystathionine, and methylmalonic acid to vitamin treatment in dialysis patients. Clin Chem 2005; 51: 196-201
  • 4 Herrmann W, Obeid R. Hyperhomocysteinemia and response of methionine cycle intermediates to vitamin treatment in renal patients. Clin Chem Lab Med 2005; 43: 1039-1047
  • 5 Misra UK, Kalita J, Das A. Vitamin B12 deficiency neurological syndromes: a clinical, MRI and electrodiagnostic study. Electromyogr Clin Neurophysiol 2003; 43: 57-64
  • 6 Yang LK, Wong KC, Wu MY. et al. Correlations between folate, B12, homocysteine levels, and radiological markers of neuropathology in elderly post-stroke patients. J Am Coll Nutr 2007; 26: 272-278
  • 7 Kumar N. Neurologic aspects of cobalamin (B12) deficiency. Handb Clin Neurol 2014; 120: 915-926
  • 8 Herrmann W, Obeid R, Schorr H. et al. Homocysteine, methylenetetrahydrofolate reductase C677T polymorphism and the B-vitamins: a facet of nature-nurture interplay. Clin Chem Lab Med 2003; 41: 547-553
  • 9 Herrmann W, Schorr H, Obeid R. et al. Disturbed homocysteine and methionine cycle intermediates s-adenosylhomocysteine and s-adenosylmethionine are related to degree of renal insufficiency in type 2 diabetes. Clin Chem 2005; 51: 891-897
  • 10 Obeid R, Kuhlmann MK, Kohler H. et al. Response of homocysteine, cystathionine, and methylmalonic acid to vitamin treatment in dialysis patients. Clin Chem 2005; 51: 196-201
  • 11 Obeid R, Schorr H, Eckert R. et al. Vitamin B12 status in the elderly as judged by available biochemical markers. Clin Chem 2004; 50: 238-241
  • 12 Kirsch SH, Herrmann W, Eckert R. et al. Factors affecting the distribution of folate forms in the serum of elderly German adults. Eur J Nutr 2013; 52: 497-504
  • 13 Kirsch SH, Herrmann W, Kruse V. et al. One year B-vitamins increases serum and whole blood folate forms and lowers plasma homocysteine in older Germans. Clin Chem Lab Med 2015; 53: 445-552
  • 14 de Bree A, Verschuren WM, Kromhout D. et al. Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol Rev 2002; 54: 599-618
  • 15 Herrmann W. Hyperhomocysteinämie, B-Vitamin-Mangel und Gefäß- sowie neurodegenerative Erkrankungen. In: Thomas L. Hrsg. Labor und Diagnose. 6. Aufl.. Frankfurt/Main: TH-Books Verlagsgesellschaft mbH; 2005: 586-618
  • 16 Selhub J, Jacques PF, Rosenberg IH. et al. Serum total homocysteine concentrations in the third National Health and Nutrition Examination Survey (1991–1994): population reference ranges and contribution of vitamin status to high serum concentrations. Ann Intern Med 1999; 131: 331-339
  • 17 Tucker KL, Selhub J, Wilson PW. et al. Dietary intake pattern relates to plasma folate and homocysteine concentrations in the Framingham Heart Study. J Nutr 1996; 126: 3025-3031
  • 18 Huang T, Chen Y, Yang B. et al. Meta-analysis of B vitamin supplementation on plasma homocysteine, cardiovascular and all-cause mortality. Clin Nutr 2012; 31: 448-454
  • 19 Clarke R, Halsey J, Lewington S. et al. Effects of lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals. Arch Intern Med 2010; 170: 1622-1631
  • 20 Rothman KJ. Causes. Am J Epidemiol 1976; 104: 587-592
  • 21 McCaddon A, Miller JW. Assessing the association between homocysteine and cognition: reflections on Bradford Hill, meta-analyses, and causality. Nutr Rev 2015; 73: 723-735
  • 22 Beydoun MA, Beydoun HA, Gamaldo AA. et al. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health 2014; 14: 643
  • 23 Rai V. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and Alzheimer disease risk: a meta-analysis. Mol Neurobiol 2017; 54: 1173-1186
  • 24 Van Dam F, Van Gool WA. Hyperhomocysteinemia and Alzheimer’s disease: A systematic review. Arch Gerontol Geriatr 2009; 48: 425-430
  • 25 Wald DS, Kasturiratne A, Simmonds M. Serum homocysteine and dementia: Meta-analysis of eight cohort studies including 8669 participants. Alzheimers Dement 2011; 7: 412-417
  • 26 Seshadri S, Beiser A, Selhub J. et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 2002; 346: 476-483
  • 27 Obeid R, Herrmann W. Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett 2006; 580: 2994-3005
  • 28 Rothman KJ, Greenland S. Causation and causal inference in epidemiology. Am J Public Health 2005; 95 (Suppl. 01) S144-S150
  • 29 Durga J, van Boxtel MP, Schouten EG. et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet 2007; 369: 208-216
  • 30 Jerneren F, Elshorbagy AK, Oulhaj A. et al. Brain atrophy in cognitively impaired elderly: the importance of long-chain omega-3 fatty acids and B vitamin status in a randomized controlled trial. Am J Clin Nutr 2015; 102: 215-221
  • 31 Oulhaj A, Jerneren F, Refsum H. et al. Omega-3 fatty acid status enhances the prevention of cognitive decline by B vitamins in mild cognitive impairment. J Alzheimers Dis 2016; 50: 547-557
  • 32 Kang JH, Cook N, Manson J. et al. A trial of B vitamins and cognitive function among women at high risk of cardiovascular disease. Am J Clin Nutr 2008; 88: 1602-1610
  • 33 Stanger O. Physiology of folic acid in health and disease. Curr Drug Metab 2002; 3: 211-223
  • 34 de Bree A, van Dusseldorp M, Brouwer IA. et al. Folate intake in Europe: recommended, actual and desired intake. Eur J Clin Nutr 1997; 51: 643-660
  • 35 Institute of Medicine. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, DC: National Academy Press; 1998: 390-422