Robust estimates of the „true” bivariate relationship between body size (X) and heart
size (Y) have seldom been determined empirically. The removal of the covariate influence
of body size from cardiac dimension variables facilitates both correct inter- or intra-group
comparisons, and the construction of reference standards for normality. In the literature
to date this „scaling” or normalisation of cardiac dimensions has been performed typically
via a per-ratio standards method, (Y/X), with body surface area chosen as the size denominator.
This review demonstrates that the per-ratio standards approach may be theoretically,
mathematically, and empirically flawed. The most appropriate scaling procedure appears
to be a curvilinear, allometric model of the general form Y = aXb. The cardiac dimension variable (Y) may be regressed upon the body size variable
(X) to derive a power function ratio (Y/Xb) that is allegedly size-independent. The current consensus is that an estimate of
fat-free mass (FFM) provides the most appropriate body size variable. In the scaling
literature allometric modelling procedures have generally yielded FFM exponents (b) consistent with the theory of geometric similarity. We suggest that cardiac dimension
data should be scaled by appropriate powers of FFM, derived from allometric modelling.
However, despite the potential superiority of FFM as a scaling denominator, reference
standards for normality based on FFM have not been developed or proposed. Future research
should examine the robustness of the FFM-cardiac dimension relationship in large samples.
Key words:
Allometry - body size - body composition - heart size
References
- 01
Abergel E, Tase M, Bohlender J, Menard J, Chatellier G.
Which definition for left ventricular hypertrophy?.
Amer J Cardiol.
1995;
75
498-502
- 02
Albrecht G H, Gelvin B R, Hartman S E.
Ratios as a size adjustment in morphometrics.
Amer J Phys Anthropol.
1993;
91
441-468
- 03
Andrén B, Lind L, Larsson K, Hedenstierna G, Ljunghall S, Lithell H.
The influence of body composition on left ventricular mass and other echocardiographic
and Doppler measurements in 70-year old males.
Clin Physiol.
1995;
15
425-433
- 04
Atchley W R, Gaskins C T, Anderson D.
Statistical properties of ratios. I. Empirical results.
Systems Zool.
1976;
25
137-148
- 05
Batterham A M, George K P, Mullineaux D R.
Allometric scaling of left ventricular mass by body dimensions in males and females.
Med Sci Sports Exerc.
1997;
29
181-186
- 06
Batterham A M, George K P.
Modelling the influence of body size and composition on M-mode echocardiographic dimensions.
Amer J Physiol.
1998;
274
708
- 07
Bella J N, Devereux R B, Roman M J, O'Grady M J, Welty T K, Lee E T, Fabsitz R R,
Howard B V.
Relations of left ventricular mass to fat-free and adipose body mass: the Strong heart
study.
Circulation.
1998;
98
2538-2544
- 08
Blimkie C R, Cunningham D A, Nichol P M.
Gas transport capacity and the echocardiographically-determined cardiac size in children.
J Appl Physiol.
1980;
49
994-999
- 09 Brooks G A, Fahey T D. Fundamentals of Human Performance. New York; Macmillan 1987
- 10
Brown S P, Thompson W R.
Standardisation indices of cardiac hypertrophy in weight lifters.
J Sports Sci.
1987;
5
147-153
- 11
Byrd B F, Wahr D, Shi Wang Y, Bouchard A, Schiller N B.
Left ventricular mass and volume/mass ratio determined by two-dimensional echocardiography
in normal adults.
J Amer Coll Cardiol.
1985;
6
1021-1026
- 12
Daniels S R, Kimball T R, Morrison J A, Khoury P, Meyer R A.
Indexing left ventricular mass to account for differences in body size in children
and adolescents without cardiovascular disease.
Amer J Cardiol.
1995;
76
699-701
- 13
Daniels S R, Kimball T R, Morrison J A, Khoury P, Witt S, Meyer R A.
Effect of lean body mass, fat mass, blood pressure, and sexual maturation on left
ventricular mass in children and adolescents. Statistical, biological, and clinical
significance.
Circulation.
1995;
92
3249-3254
- 14
de Simone G, Daniels S R, Devereux R B, Meyer R A, Roman M J, de Divitiis O, Alderman M H.
Left ventricular mass and body size in normotensive children and adults: Assessment
of allometric relations and impact of overweight.
J Amer Coll Cardiol.
1992;
20
1251-1260
- 15
de Simone G, Devereux R B, Daniels S R, Koren M J, Meyer R A, Laragh J H.
Effect of growth on variability of left ventricular mass: Assessment of allometric
signals in adults and children and their capacity to predict cardiovascular risk.
J Amer Coll Cardiol.
1995;
25
1056-1062
- 16
Devereux R B, Lutas E M, Casale P N, Kligfield P, Eisenberg R R, Hammond I W, Miller D H,
Reis G, Alderman M H, Laragh J H.
Standardisation of M-mode echocardiographic left ventricular anatomic measurements.
J Amer Coll Cardiol.
1984;
4
1222-1230
- 17
Döbeln W V.
Maximal oxygen intake, body size, and total haemoglobin in normal man.
Acta Phys Scand.
1956;
38
193
- 18
Epstein M, Goldberg S J, Allen H D, Konecke L, Wood J.
Great vessels, cardiac chamber and wall growth patterns in normal children.
Circulation.
1975;
67
1124-1129
- 19 Feigenbaum H. Echocardiography (5th Ed). Philadelphia; Lea and Febiger 1994
- 20
Fisher A G, Adams T D, Yanowitz F G, Ridges J D, Orsmond G, Nelson A G.
Non-invasive evaluation of world class athletes engaged in different modes of training.
Amer J Cardiol.
1989;
63
337-341
- 21
Fleck S J, Pattany P M, Stone M H, Kraemer W J, Thrush J, Wong K.
Magnetic resonance imaging determination of left ventricular mass: Junior Olympic
weightlifters.
Med Sci Sports Exerc.
1993;
25
522-527
- 22
George K P, Batterham A M, Jones B.
The impact of scalar variable and process on athlete-control comparisons of cardiac
dimensions.
Med Sci Sports Exerc.
1998;
30
824-830
- 23
George K P, Batterham A M, Jones B.
Echocardiographic evidence of concentric left ventricular enlargement in female weightlifters.
Europ J Appl Physiol.
1998;
79
88-92
- 24
Gerstenblith G, Frederiksen J, Yin F CP, Fortuin N J, Lakatta E G, Weisfeldt M L.
Echocardiographic assessment of a normal adult aging population.
Circulation.
1977;
56
273-278
- 25
Gutgesell H P, Rembold C M.
Growth of the human heart relative to body surface area.
Amer J Cardiol.
1990;
65
662-668
- 26
Hagan R D, Laird W P, Gettman L R.
The problems of per-surface area and per-weight standardisation indices in the determination
of cardiac hypertrophy in endurance trained athletes.
J Cardpulm Rehabil.
1985;
5
554-560
- 27 Hawes M R.
Human body composition. In: Eston R, Reilly T (eds) Kinanthropometry and Exercise Physiology Laboratory Manual. London;
Spon 1996
- 28
Henry W L, Gardin J M, Ware J H.
Echocardiographic measurements in normal subjects from infancy to old-age.
Circulation.
1980;
62
1054-1060
- 29
Hense H W, Gneiting B, Muscholl M, Broeckel U, Kuch B, Doering A, Riegger G A, Schunkert H.
The associations of body size and body composition with left ventricular mass: impacts
for indexation in adults.
J Amer Coll Cardiol.
1998;
32
451-457
- 30
Huwez F U, Pringle S D, MacFarlane P W.
A comparison of left ventricular mass and volume using different echocardiographic
conventions.
Int J Cardiol.
1991;
30
103-108
- 31
Jungers W L, German R Z.
Ontogenetic and interspecific skeletal allometry in non-human primates: bivariate
versus multivariate allometry.
Amer J Phys Anthropol.
1981;
55
195-202
- 32
Lauer M S, Anderson K M, Kannel W B, Levy D.
The impact of obesity on left ventricular mass and geometry: the Framingham Heart
Study.
J Amer Med Assn.
1991;
266
231-236
- 33
Lauer M S, Anderson K M, Larson M G, Levy D L.
A new method for indexing left ventricular mass for differences in body size.
Amer J Cardiol.
1994;
74
487-491
- 34
Lauer M S, Larson M G, Levy D.
Gender-specific reference M-mode values in adults: population-derived values with
consideration of the impact of height.
J Amer Coll Cardiol.
1995;
26
1039-1046
- 35
Levy D, Garrison R J, Savage D D, Kannel W B, Castelli W P.
Prognostic implications of echocardiographically determined left ventricular mass
in the Framingham Heart Study.
New Engl J Med.
1990;
322
1561-1566
- 36
Liao Y, Cooper R S, Durazo-Arvizu R, Mensah G A, Ghali J K.
Prediction of mortality risk by different methods of indexation for left ventricular
mass.
J Amer Coll Cardiol.
1997;
29
641-647
- 37
Longhurst J C, Kelly A R, Gonyea W J, Mitchell J H.
Echocardiographic left ventricular masses in distance runners and weight lifters.
J Appl Physiol.
1980;
48
154-162
- 38
Ludbrook L.
Comparing methods of measurement.
Clin Exp Pharmacol Physiol.
1997;
24
193-203
- 39
Malcolm D D, Burns T L, Mahoney L T, Lauer R M.
Factors affecting left ventricular mass in childhood: The Muscatine Study.
Pediatrics.
1993;
92
703-709
- 40
Maron B J.
Structural features of the athletic heart as determined by echocardiography.
J Amer Coll Cardiol.
1986;
7
190-203
- 41
Menapace F J, Hammer W J, Ritzer T F, Kessler K M, Warner H F, Spann J F, Bove A A.
Left ventricular size in competitive weight lifters; an echocardiographic study.
Med Sci Sports Exerc.
1982;
14
72-75
- 42
Nevill A M, Holder R L.
Modelling maximum oxygen uptake: A case study in non-linear regression model formulation
and comparison.
Appl Stat.
1994;
43
653-666
- 43
Nevill A M, Ramsbottom R, Williams C.
Scaling physiological measurements for individuals of different body size.
Europ J Appl Physiol.
1992;
65
110-117
- 44
Pelliccia A, Maron B J, Spataro A, Proschan M A, Spirito P.
The upper limit of physiologic left ventricular hypertrophy in highly-trained elite
athletes.
New Engl J Med.
1991;
324
295-301
- 45
Perrault H, Turcotte R A.
Exercise-induced cardiac hypertrophy: fact or fallacy?.
Sports Med.
1994;
17
288-308
- 46
Prothero J.
Heart weight as a function of body weight in mammals.
Growth.
1979;
43
139-150
- 47
Roge C LL, Silverman P A, Hart P A, Ray R M.
Cardiac structure growth pattern determined by echocardiography.
Circulation.
1978;
57
285-290
- 48
Roman M J.
How best to identify prognostically important left ventricular hypertrophy: A cut
to the chase.
J Amer Coll Cardiol.
1997;
29
648-650
- 49
Savage D D, Garrison R J, Kannel W B, Levy D, Anderson S J, Stokes III J, Feinleib M,
Castelli W P.
The spectrum of left ventricular hypertrophy in a general population sample: the Framingham
Study.
Circulation.
1987;
75
126-133
- 50
Savage D D, Levy D, Dannenberg A L, Garrison R J, Castelli W P.
Association of echocardiographic left ventricular mass with body size, blood pressure
and physical activity (The Framingham Study).
Amer J Cardiol.
1990;
65
371-376
- 51 Schmidt-Nielsen K. Scaling: Why is Animal Size so Important?. Cambridge; Cambridge
University Press 1984
- 52
Sharma S, Whyte G, McKenna W J.
Sudden cardiac death from cardiovascular disease in young athletes: fact or fiction?.
Brit J Sports Med.
1997;
31
269-276
- 53
Shepherd R J.
The athlete's heart: is big beautiful?.
Brit J Sports Med.
1996;
30
5-10
- 54
Tanner J M.
Fallacy of per-weight and per-surface area standards and their relation to spurious
correlation.
J Appl Physiol.
1949;
2
1-15
- 55
Triuzli M, Gillam L D, Gentile F, Newell J B, Weyman A E.
Normal adult cross-sectional echocardiographic values: linear dimensions and chamber
areas.
Echocardiography.
1983;
1
403-426
- 56
Urbina E M, Gidding S S, Bao W, Pickoff A S, Berdusis K, Berenson G S.
Effect of body size, ponderosity, and blood pressure on left ventricular growth in
children and young adults in the Bogalusa Heart Study.
Circulation.
1995;
91
2400-2406
- 57
Urhausen A, Kindermann W.
Echocardiographic findings in strength- and endurance-trained athletes.
Sports Med.
1992;
13
270-284
- 58
West G B, Brown J H, Enquist B J.
A general model for the origin of allometric scaling laws in biology.
Science.
1997;
276
122-126
- 59 Weyman A E. Principles and practice of echocardiography (2nd Ed). Philadelphia;
Lea and Febiger 1994
Alan M. Batterham
Sport and Exercise Science Section, School of Social Sciences University of Teesside
Borough Road
Middlesbrough, TS1 3BA, UK
Telefon: +44 (0) 1642342354
Fax: +44 (0) 1642342399
eMail: A.Batterham@tees.ac.uk