A series of technical tips and devices designed to increase accuracy and safety in
stereotactic surgery are presented. We use stereotactic magnetic resonance imaging
with three-dimensional magnetization-prepared rapid gradient-echo (MP-RAGE) imaging
to minimize image distortion, and a three-dimensional stereotactic planning system
for accurately registering three-dimensional space. We also developed several technical
devices useful for stereotactic intracranial procedures; an applicator system attached
to the frame which simulates the fiducial markers in order to keep the target at a
suitable position in stereotactic space; a torque wrench to set the torque on the
fixing pins to the frame reproducibly at 5 inch pounds in order to keep distortion
of the frame to a minimum while maintaining secure fixation; an entry point marker
to maintain the calculated trajectory angle; a straightening cannula to prevent the
thermo-coagulation needle from bending; a microvascular Doppler and its holder to
detect significant vessels and to know their precise depth in order to avoid vascular
injury from thermocoagulation; a burr hole button device to secure depth electrode
cables at the patient's skull.
Key words:
Stereotactic magnetic resonance imaging - Stereotactic frame - Technical adjuncts
References
- 1
Barnett G H, Kormos D W, Steiner C P, Weisenberger J.
Use of a frameless, armless stereotactic wand for brain tumor localization with two-dimensional
and three-dimensional neuroimaging.
Neurosurgery.
1993;
33
674-678
- 2
Barnett G H, Kormos D W, Steiner C P, Weisenberger J.
Intraoperative localization using an armless, frameless stereotactic wand. Technical
note.
J Neurosurg.
1993;
78
510-514
- 3
Chen T C, Rabb C, Apuzzo M L.
Complex technical methodologies and their applications in the surgery of intracranial
meningiomas.
Neurosurg Clin N Am.
1994;
5
261-281
- 4
Drake J M, Prudencio J, Holowaka S, Rutka J T, Hoffman H J, Humphreys R P.
Frameless stereotaxy in children.
Pediatr Neurosurg.
1994;
20
152-159
- 5
Guthrie B L, Adler J R, Jr.
Computer-assisted preoperative planning, interactive surgery, and frameless stereotaxy.
Clin Neurosurg.
1992;
38
112-131
- 6
Horstmann G A, Reinhardt H F.
Micro-stereometry: a frameless computerized navigating system for open microsurgery.
Comput Med Imaging Graph.
1994;
18
229-233
- 7
Kato A, Yoshimine T, Hayakawa T, Tomita Y, Ikeda T, Mitomo M, Harada K, Mogami H.
A frameless, armless navigational system for computer-assisted neurosurgery. Technical
note.
J Neurosurg.
1991;
74
845-849
- 8
Olivier A, Germano I M, Cukiert A, Peters T.
Frameless stereotaxy for surgery of the epilepsies: preliminary experience. Technical
note.
J Neurosurg.
1994;
81
629-633
- 9
Reinhardt H F, Horstmann G A, Gratzl O.
Sonic stereometry in microsurgical procedures for deep-seated brain tumors and vascular
malformations.
Neurosurgery.
1993;
32
51-57; discussion 57
- 10
Roberts D W, Strohbehn J W, Hatch J F, Murray W, Kettenberger H.
A frameless stereotaxic integration of computerized tomographic imaging and the operating
microscope.
J Neurosurg.
1986;
65
545-549
- 11
Roberts D W, Nakajima T, Brodwater B, Pavlidis J, Friets E, Fagan E, Hartov A, Strohbehn J.
Further development and clinical application of the stereotactic operating microscope.
Stereotact Funct Neurosurg.
1992;
58
114-117
- 12
Sandeman D R, Patel N, Chandler C, Nelson R J, Coakham H B, Griffith H B.
Advances in image-directed neurosurgery: preliminary experience with the ISG Viewing
Wand compared with the Leksell G frame.
Br J Neurosurg.
1994;
8
529-544
- 13
Takizawa T.
Isocentric stereotactic three-dimensional digitizer for neurosurgery.
Stereotact Funct Neurosurg.
1993;
60
175-193
- 14
Tan K K, Grzeszczuk R, Levin D N, Pelizzari C A, Chen G T, Erickson R K, Johnson D,
Dohrmann G J.
A frameless stereotactic approach of neurosurgical planning based on retrospective
patient-image registration. Technical note.
J Neurosurg.
1993;
79
296-303
- 15
Yeh H S, Taha J M, Tobler W D.
Implantation of intracerebral depth electrodes for monitoring seizures using the Pelorus
stereotactic system guided by magnetic resonance imaging. Technical note.
J Neurosurg.
1993;
78
138-141
- 16
Zamorano L J, Nolte L, Kadi A M, Jiang Z.
Interactive intraoperative localization using an infrared-based system.
Neurol Res.
1993;
15
290-298
- 17
Golfinos J G, Fitzpatrick B C, Smith L R, Spetzler R F.
Clinical use of a frameless stereotactic arm: results of 325 cases.
J Neurosurg.
1995;
83
197-205
- 18
Dormont D, Zerah M, Cornu P, Parker F, Aubert B, Sigal R, Francke J P, Zouaoui A,
Marsault C.
A technique of measuring the precision of an MR-guided stereotaxic installation using
anatomic specimens. AJNR.
Am J Neuroradiol.
1994;
15
365-371
- 19
Galloway R L, Jr., Maciunas R J, Latimer J W.
The accuracies of four stereotactic frame systems: an independent assessment.
Biomed Instrum Technol.
1991;
25
457-460
- 20
Walton L, Hampshire A, Foster D MC, Kemeny A A.
A phantom study to assess the accuracy of stereotactic localization, using T1-weighted
magnetic resonance imaging with the Leksell stereotactic system.
Neurosurgery.
1996;
38
170-178
- 21
Maciunas R J, Galloway R L, Jr., Latimer J W.
The application accuracy of stereotactic frames.
Neurosurgery.
1994;
35
682-694; discussion 694 - 695
- 22
Maciunas R J, Galloway R L, Jr., Latimer J W, Cobb C, Zaccharias E, Moore A, Mandava V R.
An independent application accuracy evaluation of stereotactic frame systems.
Stereotact Funct Neurosurg.
1992;
58
103-107
- 23
Kitchen N D, Lemieux L, Thomas D G.
Accuracy in frame-based and frameless stereotaxy.
Stereotact Funct Neurosurg.
1993;
61
195-206
- 24
Kamiryo T, Laws E R, Jr.
Stereotactic frame-based error in magnetic-resonance-guided stereotactic procedures:
A method for measurement of error and standization of technique.
Stereotact Funct Neurosurg.
1996 - 97;
67
198-209
- 25
Sumanaweera T, Adler T, Napel S, Glover G.
Characterization of spatial distortion in magnetic resonance imaging and its implications
for stereotactic surgery.
Neurosurgery.
1994;
35
696-704
- 26
Mugler III. J, Brookeman J.
Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE).
Magn Reson Med.
1990;
15
152-157
- 27
Goble J, Snell J, Hinckley K, Kassell N.
A real time system for 3D neurosurgical planning.
Proc SPIE VBC.
1994;
2359
552-563
- 28
Snell J, Jackson T, Katz W, Hinckley K, Goble J, Kassell N.
Three dimensional stereotactic neurosurgical planner/stimulator.
Proc SPIE Med Imaging.
1995;
2431
110-118
- 29
Kamiryo T, Laws E R, Jr.
A stereotactic gauge for defining cranial entry points.
Stereotact Funct Neurosurg.
1996 - 97;
67
210-212
- 30
Gilsbach J, Mohadjer M, Mundinger F.
A new safety device to prevent bleeding complications during stereotactic biopsy -
the “stereotactic” Doppler sonography.
Acta Neurochir.
1987;
89
77-79
- 31
Kamiryo T, Laws E R, Jr.
Identification and localization of intracerebral vessels by microvascular doppler
in stereotactic pallidotomy and thalamotomy: Technical Note.
Neurosurgery.
1997;
40
877-879
- 32
Kamiryo T, Laws E R, Jr.
A burr hole button to secure the electrode cable in depth electrode placement.
J Neurosurg.
1997;
86
905-906
Corresponding Author
F.A.C.S M.D. Edward R. Laws
Jr.
Department of Neurological Surgery University of Virginia, Health Sciences Center,
Box 212
Charlottesville
VA 22908
USA
Phone: +1804-924-2650
Fax: +1804-924-5894
Email: e15g@virginia.edu