Zusammenfassung:
Hintergrund: Die nicht-invasive druckunterstützte Spontanatmung („pressure support ventilation”,
NPSV) erfordert das aktive Auslösen der Beatmung bei jedem Atemzug. Die Studie sollte
ermitteln, wie sich NPSV, auf das Atemmuster, die Ventilation und die Belastung der
Atemmuskulatur bei Patienten mit stabiler hyperkapnischer chronisch-obstruktiver Lungenerkrankung
(COPD) auswirkt. Methode: 7 Patienten (Alter 66 ± 9 Jahre; FEV1 43 ± 13 % Soll; PaO2 52 ± 19 mmHg; PaCO2 58 ± 12 mmHg) nahmen an der Studie teil. Die physiologischen Variablen wurden bei
Spontanatmung und am Ende einer 60-minütigen NPSV-Beatmung ermittelt. Die Beatmung
erfolge über eine Gesichtsmaske. Der Inspirationsdruck (IPAP) wurde auf 12 - 14 cm
H2O, der Exspirationsdruck (EPAP) auf 3 cm H2O eingestellt. Die Aktivität der Atemmuskeln wurde als ösophageales und transdiaphragmales
Druck-Zeit-Produkt (PTPes und PTPdi) gemessen. Ergebnisse: Ineffiziente Atemmuskeltätigkeit (Non-triggering) wurde nur sporadisch beobachtet.
NPSV verbesserte die Ventilation im Vergleich zur nicht-unterstützten Spontanatmung:
der PaCO2 sank von 58 ± 11 mmHg auf 50 ± 14 mmHg (p < 0,05). Gleichzeitig wurde die Atemmuskulatur
um 30 % entlastet (p < 0,05). Die Atemfrequenz und das Atemmuster änderten sich nicht.
Schlussfolgerungen: Bei klinisch stabilen Patienten mit hyperkapnischer COPD wird durch NPSV die Atemanstrengung
zuverlässig erkannt und unterstützt. Dadurch verbessert sich die Ventilation und die
Atemmuskulatur wird entlastet.
Patient-ventilator Interaction with Noninvasive Pressure Support Ventilation in Patients
with Hypercapnic COPD
Background: Noninvasive pressure support ventilation (NPSV) demands triggering with each breath.
This study investigates the effects of NPSV via face mask on breathing pattern, ventilation
and respiratory muscle loading in patients with hypercapnic stable COPD. Methods: 7 patients (age 66 ± 9 years; FEV1 43 ± 13 % predicted; PaO2 52 ± 19 mmHg; PaCO2 58 ± 12 mmHg) were included. The physiologic variables were evaluated during spontaneous
breathing and at the end of a 60 minutes period with NPSV. Inspiratory positive airway
pressure (IPAP) and expiratory positive airway pressure (EPAP) were adjusted to 12
- 14 cm H2O and 3 cm H2O, respectively. Respiratory muscle activity was measured as esophageal and transdiaphrgmatic
pressure time product (PTPes and PTPdi). Results: Non-triggering was observed only occasionaly. Compared to unsupported spontaneous
breathing NPSV improved ventilation: PaCO2 was reduced from 58 ± 11 mmHg to 50 ± 14 mmHg (p ± 0,05). Respiratory muscles were
unloaded by 30 % (p ± 0,05). Breathing frenquency and breathing pattern did not change.
Conclusions: In patients with hypercapnic stable COPD NPSV effectively recognizes and supports
breathing efforts. As a result ventilation is improved and respiratory muscles are
unloaded.
Literatur
- 1
Nocturnal Oxygen Therapy Trial Group .
Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease:
a clinical trial.
Ann Intern Med.
1989;
93
391-398
- 2
Report of the Medical Research Council Working Party .
Long-term domiciliary therapy in chronic hypoxic cor pulmonale complicating chronic
bronchitis and emphysema.
Lancet.
1981;
1
681-686
- 3
Sneerson J M.
The changing role of mechanical ventilation in COPD.
Eur Respir J.
1996;
9
393-398
- 4
Lin C C.
Comparison between nocturnal nasal positive pressure ventilation combined with oxygen
therapy and oxygen monotherapy in patients with severe COPD.
Am J Respir Crit Care Med.
1996;
154
353-358
- 5
Meecham Jones D J, Paul E A, Jones P W, Wedzicha J A.
Nasal pressure support ventilation plus oxygen compared with oxygen therapy alone
in hypercapnic COPD.
Am J Respir Crit Care Med.
1995;
152
538-544
- 6
Schönhofer B, Köhler D.
Ventilatorische Insuffizienz und hyperkapnische Kompensation infolge chronisch belasteter
„Atempumpe”.
Dtsch Med Wschr.
1994;
119
1209-1214
- 7
Begin P, Grassino A.
Inspiratory muscle dysfunction and chronic hypercapnia in chronic obstructive pulmonary
disease.
Am Rev Respir Dis.
1991;
143
905-912
- 8
Turkington P M, Elliott M W.
Rationale for the use of non-invasive ventilation in chronic ventilatory failure.
Thorax.
2000;
55
417-423
- 9
Pankow W, Hijjeh N, Penzel T, Becker H F, Peter J H, v Wichert P.
Influence of noninvasive positive pressure ventilation on inspiratory muscle activity
in obese subjects.
Eur Respir J.
1997;
10
2847-2852
- 10
Panizza J, Finucane K E.
Comparison of balloon and transducer catheters for estimating lung elasticity.
J Appl Physiol.
1992;
72
231-235
- 11
Baydur A, Behrakis K P, Zin W A, Jaeger M, Milic-Emili J.
A simple method for assessing the validity of esophageal balloon technique.
Am Rev Respir Dis.
1982;
126
788-791
- 12
Field S, Scani S, Grassino A.
Respiratory muscle oxygen consumption estimated by the diaphragm pressure time-index.
J Appl Physiol.
1984;
57
44-51
- 13
Ambrosino N, Nava S, Bertone P, Fracchia C, Rampulla C.
Physiologic evaluation of pressure support ventilation by nasal mask in patients with
stable COPD.
Chest.
1992;
101
385-391
- 14
Carrey Z, Gottfried S B, Levy R D.
Ventilatory muscle support in respiratory failure with nasal positive pressure ventilation.
Chest.
1990;
97
150-158
- 15
Elliott M W, Mulvey D A, Moxham J, Green M, Branthwaite M A.
Inspiratory muscle effort during nasal intermittent positive pressure ventilation
in patients with chronic obstructive airway disease.
Anaesthesia.
1993;
48
8-13
- 16
Elliott M W, Aquilina R, Green M, Moxham J, Simonds A K.
A comparison of different modes of noninvasive ventilatory support: effects on ventilation
and inspiratory muscle effort.
Anaesthesia.
1994;
49
279-283
- 17
Nava S, Ambrosino N, Rubini F, Fracchia C, Rampulla C, Torri G, Calderini E.
Effect of nasal pressure support ventilation and external PEEP on diaphragmatic activity
in patients with severe stable COPD.
Chest.
1993;
103
143-150
- 18
Renston J P, DiMarco A F, Supinski G S.
Respiratory muscle rest using nasal BiPAP ventilation in patients with stable severe
COPD.
Chest.
1994;
105
1053-1060
- 19
Lien T-C, Wang J-H, Chang M-T, Kuo C-D.
Comparison of BiPAP nasal ventilation and ventilation via iron lung in severe stable
COPD.
Chest.
1993;
104
460-466
- 20
Chan C S, Bye P TP, Woolcock A J, Sullivan C E.
Eucapnia and hypercapnia in patients with chronic airflow limitation.
Am Rev Respir Dis.
1990;
141
861-865
- 21
Rossi A, Polese G, Brandi G, Conti G.
Intrinsic positive end-expiratory pressure (PEEPi).
Intensive Care Med.
1995;
21
522-536
- 22
Pankow W, Podszus T, Gutheil T, Penzel T, Peter J H, v Wichert P.
Expiratory flow limitation and intrinsic positive end-expiratory pressure in obesity.
J Appl Physiol.
1998;
85
1236-1243
- 23
Ambrosino N, Foglio K, Rubini F, Clini E, Nasa S, Vitacca M.
Non-invasive mechanical ventilation in acute respiratory failure due to chronic obstructive
pulmonary disease: correlates for success.
Thorax.
1995;
50
755-757
- 24
Schneider H, Becker H, Fus E, Stamnitz A, Peter J H, von Wichert P.
Nasale positive Druckbeatmung (BiPAP) bei Patienten mit ausgeprägter chronisch obstruktiver
Lungenerkrankung.
Med Klin.
1994;
89 (Suppl. 1)
71-73
- 25
Muir J F.
Intermittent positive pressure ventilation (IPPV) in patients with chronic obstructive
pulmonary disease (COPD).
Eur Respir Rev.
1992;
210
335-345
1 Herrn Prof. Dr. Peter von Wichert zum 65. Geburtstag gewidmet
PD Dr W Pankow
Krankenhaus NeuköllnInnere Medizin III
Rudower Straße 4812351 Berlin
eMail: E-mail: pankow-berlin@t-online.de