Zusammenfassung
Der apoptotische Zelltod ist im letzten Jahrzehnt zunehmend ins Interesse bei verschiedenen
neurobiologischen und neuroimmunologischen Fragestellungen gerückt. Obwohl Apoptose
einen primär morphologisch definierten Begriff darstellt, ist er mit einer Reihe molekular-definierter
Vorgänge verbunden und hat vielfältige funktionelle Bedeutung. Wir besprechen im Folgenden
die verfügbaren Nachweismethoden für Apoptose, das Auftreten von T-Zellapoptose bei
neuroimmunologischen Erkrankungen sowie den apoptotischen neuronalen Zelltod in Neurodegeneration
und Ischämie. Die therapeutische Nutzung durch Induktion von Apoptose bei entzündlichen
Erkrankungen bzw. deren Verhinderung bei degenerativen Prozessen wird zukünftig nur
in enger Kooperation verschiedener Forschungsrichtungen gelingen.
Apoptotic Cell Death in Neuroinflammatory and Neurodegenerative Diseases
Apoptotic cell death has gained increased importance in neurobiology and neuroimmunology.
Although apoptosis is per se defined by morphology, it is intimately linked to a series of molecular events and
has a wide array of functional implications. Here, we summarise the available detection
assays for apoptosis and the current state of research concerning T cell apoptosis
in neuroimmunology and apoptotic neuronal cell death in neurodegeneration and ischemia.
There is a clear therapeutic potential by induction of apoptosis in inflammatory diseases.
Furthermore, protection from apoptotic cell death may be a promising tool in neurodegenerative
and ischemic processes. In the future, this will necessitate a close cooperation between
different fields of biology research.
Literatur
- 1
Kerr J FR, Wyllie A H, Currie A R.
Apoptosis: a basic biological phenomenon with wide ranging implications in tissue
kinetics.
Br J Cancer.
1972;
26
239-257
- 2
Gold R, Hartung H P, Lassmann H.
T-cell apoptosis in autoimmune diseases: termination of inflammation in the nervous
system and other sites with specialized immune-defense mechanisms.
Trends Neurosci.
1997;
20
399-404
- 3
Wyllie A H.
Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease
activation.
Nature.
1980;
284
555-556
- 4
Cohen J J, Duke R C, Fadok V A, Sellins K S.
Apoptosis and programmed cell death in immunity.
Annu Rev Immunol.
1992;
10
267-293
- 5
Bursch W, Paffe S, Putz B. et al .
Determination of the length of the histological stages of apoptosis in normal liver
and in altered hepatic foci of rats.
Carcinogenesis.
1990;
11
847-853
- 6
Schulze-Osthoff K, Walczak H, Dröge W, Krammer P H.
Cell nucleus and DNA fragmentation are not required for apoptosis.
J Cell Biol.
1994;
127
15-20
- 7
Nguyen K B, Pender M P.
Phagocytosis of apoptotic lymphocytes by oligodendrocytes in experimental autoimmune
encephalomyelitis.
Acta Neuropathol (Berl).
1998;
95
40-46
- 8 Chan A, Magnus T, Gold R. Phagocytosis of apoptotic inflammatory cells by microglia
and modulation by different cytokines: a mechanism for removal of apoptotic cells
in the inflamed nervous system. Glia 2000 in press
- 9
Ren Y, Savill J.
Apoptosis: The importance of being eaten.
Cell Death Differ.
1998;
5
563-568
- 10
Gavrieli Y, Sherman Y, Ben Sasson S A.
Identification of programmed cell death in situ via specific labeling of nuclear DNA
fragmentation.
J Cell Biol.
1992;
119
493-501
- 11
Gold R, Schmied M, Giegerich G. et al .
Differentiation between cellular apoptosis and necrosis by the combined use of in
situ tailing and nick translation techniques.
Lab Invest.
1994;
71
219-225
- 12
Nicholson D W.
Caspase structure, proteolytic substrates, and function during apoptotic cell death.
Cell Death Differ.
1999;
6
1028-1042
- 13
Samali A, Zhivotovsky B, Jones D. et al .
Apoptosis: Cell death defined by caspase activation.
Cell Death Differ.
1999;
6
495-496
- 14
Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C.
A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression
on early apoptotic cells using fluorescein labelled annexin V.
J Immunol Meth.
1995;
184
39-51
- 15
Kroemer G, Dallaporta B, Resche-Rigon M.
The mitochondrial death/life regulator in apoptosis and necrosis.
Annu Rev Physiol.
1998;
60
619-642
- 16
Granville D J, Carthy C M, Hunt D WC, McManus B M.
Apoptosis: Molecular aspects of cell death and disease.
Lab Invest.
1998;
78
893-913
- 17
Stadelmann C, Lassmann H.
Detection of apoptosis in tissue sections.
Cell Tissue Res.
2000;
301
19-31
- 18
Tomei L D, Shapiro J P, Cope F O.
Apoptosis in C3H/10T1/2 mouse embryonic cells: evidence for internucleosomal DNA modification
in the absence of double-strand cleavage.
Proc Natl Acad Sci.
1993;
90
853-857
- 19
Oberhammer F, Wilson J W, Dive C. et al .
Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments
prior to or in the absence of internucleosomal fragmentation.
EMBO J.
1993;
12
3679-3684
- 20 Virchow R. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische
Gewebelehre. Berlin; Hirschwald 1858
- 21
Bonfoco E, Leist M, Zhivotovsky B. et al .
Cytoskeletal breakdown and apoptosis elicited by NO donors in cerebellar granule cells
require NMDA receptor activation.
J Neurochem.
1996;
67
2484-2493
- 22
Leist M, Single B, Naumann H. et al .
Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis.
Exp Cell Res.
1999;
249
396-403
- 23 Zülch K J, Hossmann V.
Patterns of cerebral infarctions. In: Vinken PJ, Bruyn GW, Klawans HL (eds) Handbook of Clinical Neurology, Vol. 53
(Revised Series 9). Amsterdam; Elsevier Science Publishers 1988: 175-198
- 24
Matsuda H, Strebel F R, Kaneko T. et al .
Apoptosis and necrosis occurring during different stages of primary and metastatic
tumor growth of a rat mammary adenocarcinoma.
Anticancer Res.
1996;
16
1117-1121
- 25
Sakamoto T, Repasky W T, Uchida K. et al .
Modulation of cell death pathways to apoptosis and necrosis of H2O2-treated rat thymocytes by lipocortin I.
Biochem Biophys Res Commun.
1996;
220
643-647
- 26
Shimizu S, Eguchi Y, Kamiike W. et al .
Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of
apoptosis by Bcl-2 and Bcl-XL.
Cancer Research.
1996;
56
2161-2166
- 27
Lieberthal W, Menza S A, Levine J S.
Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular
cells.
Am J Physiol Renal Physiol.
1998;
274
F315-F327
- 28
Pender M P, Nguyen K B, McCombe P A, Kerr J F.
Apoptosis in the nervous system in experimental allergic encephalomyelitis.
J Neurol Sci.
1991;
104
81-87
- 29
Schmied M, Breitschopf H, Gold R. et al .
Apoptosis of T lymphocytes in experimental autoimmune encephalomyelitis. Evidence
for programmed cell death as a mechanism to control inflammation in the brain.
Am J Pathol.
1993;
143
446-452
- 30
Barac-Latas V, Wege H, Lassmann H.
Apoptosis of T-lymphocytes in Corona Virus induced encephalomyelitis.
Reg Immunol.
1995;
6
355-357
- 31
Bauer J, Stadelmann C, Bancher C. et al .
Apoptosis of T lymphocytes in acute disseminated encephalomyelitis.
Acta Neuropathol (Berl).
1999;
97
543-546
- 32
Ozawa K, Suchanek G, Breitschopf H. et al .
Patterns of oligodendroglia pathology in multiple sclerosis.
Brain.
1994;
117
1311-1322
- 33
Zettl U K, Gold R, Hartung H P, Toyka K V.
Apoptotic cell death of T-lymphocytes in experimental autoimmune neuritis of the Lewis
rat.
Neurosci Let.
1994;
176
75-79
- 34
Zettl U K, Gold R, Toyka K V, Hartung H P.
In situ demonstration of T cell activation and elimination in the peripheral nervous
system during experimental autoimmune neuritis in the Lewis rat.
Acta Neuropathol (Berl).
1996;
91
360-367
- 35
Wekerle H, Linington C, Lassmann H, Meyermann R.
Cellular immune reactivity within the CNS.
Trends Neurosci.
1986;
9
271-277
- 36
Conti G, Scarpini E, Rostami A. et al .
Schwann cell undergoes apoptosis during experimental allergic neuritis (EAN).
J Neurol Sci.
1998;
161
29-35
- 37
Schneider C, Gold R, Dalakas M C. et al .
MHC class I mediated cytotoxicity does not induce apoptosis in muscle fibers nor in
inflammatory T cells: Studies in patients with polymyositis, dermatomyositis, and
inclusion body myositis.
J Neuropathol Exp Neurol.
1996;
55
1205-1209
- 38
Behrens L, Bender A, Johnson M A, Hohlfeld R.
Cytotoxic mechanisms in inflammatory myopathies. Co-expression of Fas and protective
Bcl-2 in muscle fibers and inflammatory cells.
Brain.
1997;
120
929-938
- 39
Adler S, Zettl H, Bruck W. et al .
The role of apoptotic cell death and bcl-2 protein expression in dermatomyositis.
Eur J Dermatol.
1997;
7
413-416
- 40
Schneider C, Dalakas M C, Toyka K V. et al .
T-cell apoptosis in inflammatory neuromuscular disorders associated with human immunodeficiency
virus infection.
Arch Neurol.
1999;
56
79-83
- 41
Schneider C, Matsumoto Y, Kohyama K. et al .
Experimental autoimmune myositis in the Lewis rat: lack of spontaneous T-cell apoptosis
and therapeutic response to glucocorticosteroid application.
J Neuroimmunol.
2000;
107
83-87
- 42
Nau R, Zettl U, Gerber J. et al .
Granulocytes in the subarachnoid space of humans and rabbits with bacterial meningitis
undergo apoptosis and are eliminated by macrophages.
Acta Neuropathol (Berl).
1998;
96
472-480
- 43
Gold R, Schmied M, Tontsch U. et al .
Antigen presentation by astrocytes primes rat T lymphocytes for apoptotic cell death:
A model for T cell apoptosis in vivo.
Brain.
1996;
119
651-659
- 44
Smith T, Schmied M, Hewson A K. et al .
Apoptosis of T cells and macrophages in the central nervous system of intact and adrenalectomized
Lewis rats during experimental allergic encephalomyelitis.
J Autoimmun.
1996;
9
167-174
- 45
Tabi Z, McCombe P A, Pender M P.
Apoptotic elimination of V beta 8.2+ cells from the central nervous system during
recovery from experimental autoimmune encephalomyelitis induced by the passive transfer
of V beta 8.2+ encephalitogenic T cells.
Eur J Immunol.
1994;
24
2609-2617
- 46
Bauer J, Bradl M, Hickley W F. et al .
T-cell apoptosis in inflammatory brain lesions: destruction of T cells does not depend
on antigen recognition (see comments).
Am J Pathol.
1998;
153
715-724
- 47
Zipp F, Krammer P H, Weller M.
Immune (dys)regulation in multiple sclerosis: role of the CD95/CD95 ligand system.
Immunol Today.
1999;
20
550-554
- 48
Bachmann R, Eugster H P, Frei K. et al .
Impairment of TNF-receptor-1 signaling but not Fas signaling diminishes T-cell apoptosis
in myelin oligodendrocyte glycoprotein peptide-induced chronic demyelinating autoimmune
encephalomyelitis in mice.
Am J Pathol.
1999;
154
1417-1422
- 49
Zipp F, Weller M, Calabresi P A. et al .
Increased serum levels of soluble CD95 (APO-1/Fas) in relapsing-remitting multiple
sclerosis.
Ann Neurol.
1998;
43
116-120
- 50
Pollard J D.
A critical review of therapies in acute and chronic inflammatory demyelinating polyneuropathies.
Muscle Nerve.
1987;
10
214-221
- 51
Gold R, Hartung H P, Toyka K V.
Kortikosteroidtherapie neurologischer Autoimmunerkrankungen.
Münchn Med Wschr.
1995;
137
512-514
- 52
Boumpas D T, Paliogianni F, Anastassiou E D, Ballow J E.
Glucocorticosteroid action on the immune system: molecular and cellular aspects.
Clin Exp Rheumatol.
1991;
9
413-423
- 53
Brann D W, Hendry L B, Mahesh V B.
Emerging diversities in the mechanism of action of steroid hormones.
J Steroid Biochem Molec Biol.
1995;
52
113-133
- 54
Buttgereit F, Wehling M, Burmester G R.
A new hypothesis of modular glucocorticoid actions.
Arthritis Rheumat.
1998;
41
761-767
- 55
Di Virgilio F, Chiozzi P, Falzoni S. et al .
Cytolytic P2X purinoceptors.
Cell Death Differ.
1998;
5
191-199
- 56
Zettl U K, Gold R, Toyka K V, Hartung H P.
Intravenous glucocorticosteroid treatment augments apoptosis of inflammatory T cells
in experimental autoimmune neuritis (EAN) of the Lewis rat.
J Neuropathol Exp Neurol.
1995;
54
540-547
- 57
Schmidt J, Gold R, Schönrock L. et al .
T-cell apoptosis in situ in experimental autoimmune encephalomyelitis following methylprednisolone pulse therapy.
Brain.
2000;
123
1431-1441
- 58
Kaser A, Nagata S, Tilg H.
Interferon alpha augments activation-induced T cell death by upregulation of Fas (CD95/APO-1)
and Fas ligand expression.
Cytokine.
1999;
11
736-743
- 59
Liblau R, Tisch R, Bercovici N, McDevitt H O.
Systemic antigen in the treatment of T-cell-mediated autoimmune diseases.
Immunology Today.
1997;
18
599-604
- 60
Critchfield J M, Racke M K, Zuniga Pflucker J C. et al .
T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis.
Science.
1994;
263
1139-1143
- 61
Weishaupt A, Gold R, Giegerich G. et al .
Antigen therapy eliminates T-cell inflammation by apoptosis: Effective treatment of
experimental autoimmune neuritis with recombinant myelin protein P2.
Proc Natl Acad Sci USA.
1997;
94
1338-1342
- 62
Weishaupt A, Gold R, Hartung T. et al .
Role of TNF-alpha in high-dose antigen therapy in experimental autoimmune neuritis:
Inhibition of TNF-alpha by neutralizing antibodies reduces T-cell apoptosis and prevents
liver necrosis.
J Neuropathol Exp Neurol.
2000;
59
368-376
- 63
The Lenercept Multiple Sclerosis Study Group and the University of British Columbia
MS/MRI Analysis G roup.
TNF neutralization in MS. Results of a randomized, placebo-controlled multicenter
study.
Neurology.
1999;
53
457-465
- 64
Scheff S W, DeKosky S T, Price D A.
Quantitative assessment of cortical synaptic density in Alzheimer's disease.
Neurobiol Aging.
1990;
11
29-37
- 65
Yamatsuji T, Matsui T, Okamoto T. et al .
G protein-mediated neuronal DNA fragmentation induced by familial Alzheimer's disease-associated
mutants of APP.
Science.
1996;
272
1349-1352
- 66
Guo Q, Sopher B L, Furukawa K. et al .
Alzheimer's presenilin mutation sensitizes neural cells to apoptosis induced by trophic
factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals.
J Neurosci.
1997;
17
4212-4222
- 67
Wolozin B, Iwasaki K, Vito P. et al .
Participation of presenilin 2 in apoptosis: enhanced basal activity conferred by an
Alzheimer mutation.
Science.
1996;
274
1710-1713
- 68
Gschwind M, Huber G.
Apoptotic cell death induced by beta-amyloid 1-42 peptide is cell type dependent.
J Neurochem.
1995;
65
292-300
- 69
Li Y P, Bushnell A F, Lee C M. et al .
Beta-amyloid induces apoptosis in human-derived neurotypic SH-SY5Y cells.
Brain Res.
1996;
738
196-204
- 70
Kitamura Y, Shimohama S, Kamoshima W. et al .
Changes of p53 in the brains of patients with Alzheimer's disease.
Biochem Biophys Res Commun.
1997;
232
418-421
- 71
Kitamura Y, Shimohama S, Kamoshima W. et al .
Alteration of proteins regulating apoptosis, Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-1 and
CPP32, in Alzheimer's disease.
Brain Res.
1998;
780
260-269
- 72
Nishimura T, Akiyama H, Yonehara S. et al .
Fas antigen expression in brains of patients with Alzheimer-type dementia.
Brain Res.
1995;
695
137-145
- 73
Su J H, Cummings B J, Cotman C W.
Plaque biogenesis in brain aging and Alzheimer's disease. I. Progressive changes in
phosphorylation states of paired helical filaments and neurofilaments.
Brain Res.
1996;
739
79-87
- 74
Su J H, Deng G, Cotman C W.
Bax protein expression is increased in Alzheimer's brain: correlations with DNA damage,
Bcl-2 expression, and brain pathology.
J Neuropathol Exp Neurol.
1997;
56
86-93
- 75
Perry G, Nunomura A, Lucassen P. et al .
Apoptosis and Alzheimer's disease (lettert).
Science.
1998;
282
1268-1269
- 76
Perry G, Nunomura A, Smith M A.
A suicide note from Alzheimer disease neurons? (news; comment).
Nat Med.
1998;
4
897-898
- 77
Stadelmann C, Deckwerth T L, Srinivasan A. et al .
Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar
degeneration in Alzheimer's disease - Evidence for apoptotic cell death.
Am J Pathol.
1999;
155
1459-1466
- 78
Mattson M P.
Apoptotic and anti-apoptotic synaptic signaling mechanisms.
Brain Pathol.
2000;
10
300-312
- 79
Paulson H L.
Toward an understanding of polyglutamine neurodegeneration.
Brain Pathol.
2000;
10
293-299
- 80
Bruck Y, Bruck W, Kretzschmar H A, Lassmann H.
Evidence for neuronal apoptosis in pontosubicular neuron necrosis.
Neuropathol Appl Neurobiol.
1996;
22
23-29
- 81
Leist M, Nicotera P.
Apoptosis, excitotoxicity, and neuropathology.
Exp Cell Res.
1998;
239
183-201
- 82
Leist M, Single B, Castoldi A F. et al .
Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision
between apoptosis and necrosis.
J Exp Med.
1997;
185
1481-1486
- 83
Loddick S A, MacKenzie A, Rothwell N J.
An ICE inhibitor, z-VAD-DCB attenuates ischaemic brain damage in the rat.
NeuroReport.
1996;
7
1465-1468
- 84
Endres M, Namura S, Shimizu-Sasamata M. et al .
Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition
of the caspase family.
J Cereb Blood Flow Metab.
1998;
18
238-247
- 85
Schulz J B, Weller M, Matthews R T. et al .
Extended therapeutic window for caspase inhibition and synergy with MK-801 in the
treatment of cerebral histotoxic hypoxia.
Cell Death Differ.
1998;
5
847-857
- 86
Nicotera P, Leist M, Ferrando-May E.
Intracellular ATP, a switch in the decision between apoptosis and necrosis.
Toxicol Lett.
1998;
103
139-142
- 87
Schulz J B, Weller M, Moskowitz M A.
Caspases as treatment targets in stroke and neurodegenerative diseases.
Ann Neurol.
1999;
45
421-429
Priv.-Doz. Dr. Ralf Gold
Neurologische Universitätsklinik
Josef-Schneider-Straße 11
97080 Würzburg
Email: r.gold@mail.uni-wuerzburg.de