Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2001; 11(3): 87-93
DOI: 10.1055/s-2001-14436
WISSENSCHAFT UND FORSCHUNG
Wissenschaft und Forschung
© Georg Thieme Verlag Stuttgart · New York

Direkte und indirekte überlagernde elektrische Muskelstimulation zur Aufdeckung unvollständiger Muskelaktivierung

Direct and indirect interpolated electric muscle stimulation to discover incomplete muscle activationK. Pfeifer, L. Vogt, R. Obermüller, W. Banzer
  • Johann-Wolfgang-Goethe-Universität, Abteilung Sportmedizin (Leiter: Prof. Dr. med. Dr. phil. Winfried Banzer), Frankfurt/Main
Weitere Informationen

Publikationsverlauf

28. 2. 2000

1. 2. 2001

Publikationsdatum:
31. Dezember 2001 (online)

Zusammenfassung

Überlagernde Nerv- oder Muskelstimulationen bieten eine Möglichkeit zur Aufdeckung von neuromuskulären Hemmungen. Mit der vorliegenden Studie sollte gezeigt werden, dass bei maximal willkürlichen Kontraktionen weder durch direkte (DST) noch durch indirekte (DST) überlagernde Muskelstimulation Kraftanstiege provoziert werden können. Bei 14 gesunden Probanden wurde die isometrische Maximalkraft der Kniestreckmuskulatur in vier verschiedenen Kniewinkelstellungen (45/60/75/90°) gemessen. Die Probanden befanden sich in Rückenlage (15° Hüftbeugewinkel). Während der maximal willkürlichen Kontraktionen wurde der M. quadrizeps femoris mit supramaximalen Einzelreizen (Rechteckimpuls, bipolar, 500 µs, 90 mA) direkt und indirekt stimuliert. Für die DST wurden Oberflächenelektroden (4 × 6 cm) über den M. vastus medialis, M. rectus femoris und M. vastus medialis verwendet. Die IST wurde mit einer bipolaren Elektrode in der Leistenbeuge über dem N. femoralis durchgeführt. Bei beiden Verfahren wurden in allen Kniewinkelstellungen im Mittel Kraftanstiege von weniger als 1 % gemessen. Weder für die verwendeten Stimulationstechniken noch für die verschiedenen Kniewinkel konnten signifikante Unterschiede ermittelt werden. Keine der beiden Techniken konnte bei gesunden Probanden Kraftanstiege über das willkürliche Maximalkraftniveau hinaus provozieren. Die Methode erscheint daher zur Aufdeckung von Rekrutierungshemmungen bei Patienten mit Verletzungen und Funktionsstörungen als geeignet.

Direct and indirect interpolated electric muscle stimulation to discover incomplete muscle activation

While superimposed twitch techniques offer a possibility for the detection of neuromuscular inhibitions it is still under controversial discussion whether healthy subjects can voluntarily achieve maximal recruitment of their knee extensor muscles. The goal of this study was to test the hypothesis that during maximal isometric contractions (MVC) neither direct (DST) nor indirect superimposed twitch techniques (IST) produce force increases. The isometric strength of the knee extensor muscles of both legs was measured in supine position (hip angle 15°) and different knee angles (45/60/75/90°) of 14 healthy subjects. The lower leg was fixed in a cuff connected to a force transducer. During MVC the quadriceps femoris was either directly or indirectly stimulated with supramaximal single pulses (rectangle, biphasic, 500 µs, 90 mA). For DST surface electrodes were fixed on the bellies of vastus medialis, vastus lateralis and rectus femoris referring to the motor points. The IST was conducted with a bipolar electrode over the femoral nerve in the groin. The order of stimulated leg, knee angle and stimulation technique was randomized. Both techniques revealed force increases smaller than 1 % in all knee angles. The Wilcoxon-test and the Quade-test did not reveal any significant differences for stimulation technique or knee angle. Apparently, both techniques do not generate force increases in healthy subjects. Thus, the method seems to be adequate for the detection of recruitment inhibitions in patients with functional disorders or injuries.

Literatur

  • 1 Kannus P, Jozsa L, Renström P, Järvinen M, Kvist M, Lehto M, Oja P, Vuori I. The effects of training, immobilization and remobilization on musculoskeletal tissue - 1. Training and immobilization.  Scand J Med Sci Sports. 1992;  24 100-118
  • 2 Kannus P, Jozsa L, Renström P, Järvinen M, Kvist M, Lehto M, Oja P, Vuori I. The effects of training, immobilization and remobilization on musculoskeletal tissue - 2. Remobilization and prevention of immobilisation atrophy.  Scand J Med Sci Sports. 1992;  24 164-176
  • 3 Risberg M A, Ekeland A. Assessment of functional tests after anterior cruciate ligament surgery.  J Orthop Sports Phys Ther. 1994;  19 212-217
  • 4 Van Lent M ET, Drost M R, v d Wildenberg F AJM. EMG profiles of ACL-deficient patients during walking: the influence of mild fatigue.  Int J Sports Med. 1994;  15 508-514
  • 5 Wilk K E, Romaniello W T, Soscia S M, Arrigo C A, Andrews J R. The relationship between subjective knee score, isokinetic testing and functional testing in the ACL-deficient knee.  J Orthop Sports Phys Ther. 1994;  20 60-73
  • 6 Stokes M, Young A. The contributions of reflex inhibitions to arthrogenous muscle weakness.  Clin Science. 1984;  67 7
  • 7 Newham D J, Hurley M V, Jones D W. Ligamentous knee injuries and muscle inhibition.  J Orthop Rheumatol. 1989;  2 163-173
  • 8 Hurley M V, Jones D W, Wilson D, Newham D J. Rehabilitation of the quadriceps inhibited due to isolated rupture of the anterior cruciate ligament.  J Orthop Rheumatol. 1992;  5 145-154
  • 9 Snyder-Mackler L, DeLuca P F, Williams P R, Eastlack M E, Bartolozzi A R. Reflex inhibition of the quadriceps femoris muscle after injury or reconstruction of the anterior cruciate ligament.  J Bone Joint Surg. 1994;  76-A 555-560
  • 10 Snyder-Mackler L, Delitto A, Bailey S L, Stralka S W. Strength of the quadriceps femoris muscle and functional recovery after reconstruction of the anterior cruciate ligament.  J Bone Joint Surg. 1995;  77-A 1166-1173
  • 11 Dowling J J, Konert E, Ljucovic P, Andrews D M. Are humans able to voluntarily elicit maximum muscle force?.  Neurosc Lett. 1994;  179 25-28
  • 12 Allen G M, Gandevia S C, McKenzie D K. Reliability of measurements of muscle strength and voluntary activation using twitch interpolation.  Muscle Nerve. 1995;  18 593-600
  • 13 Allen G M, Gandevia S C, Neering I R, Hickie I, Jones R, Middleton J. Muscle performance, voluntary activation and perceived effort in normal subjects and patients with prior poliomyelitis.  Brain. 1994;  117 661-670
  • 14 Herbert R D, Gandevia S C. Muscle activation in unilateral and bilateral efforts assessed by motor nerve and cortical stimulation.  J Appl Physiol. 1996;  80 351-1356
  • 15 Behm D G, St-Pierre M M, Perez D. Muscle inactivation: assessment of interpolated twitch technique.  J Appl Physiol. 1996;  81 2267-2273
  • 16 Koutedakis Y, Frischknecht R, Vrbová G, Sharp N CC, Budgett R. Maximal voluntary quadriceps strength patterns in olympic overtrained athletes.  Med Sci Sports Exerc. 1992;  27 492-504
  • 17 Kramer J F. Comparison of voluntary and electrical stimulation induced torques at selected knee angles in male and female subjects.  Physiother Can. 1987;  39 157-163
  • 18 Suter E, Herzog W. Extent of muscle inhibition as a function of knee angle.  J Electromyogr Kinesiol. 1996;  7 123-130
  • 19 Strojnik V. Effect of additional electrical stimulation on maximal force productions. In: Rodano R, Ferrigno G, Santambrogio CC (eds) Proceedings of the 10th International Symposium on Biomechanics in Sports. Milano; Ermes 1992: 136-138
  • 20 Chapman S J, Edwards R HT, Greig C, Rutherford O. Practical application of the twitch interpolation technique for the study of voluntary contraction of the quadriceps in man.  J Physiol. 1984;  353 3-P
  • 21 Merton P A. Voluntary strength and fatigue.  J Physiol. 1954;  123 553-564
  • 22 Pfeifer K, Brettmann K, Banzer W. Reproducibility of a superimposed twitch technique for the diagnosis of neuromuscular function.  Int J Sports Med. 1996;  17 S70
  • 23 Pfeifer K. Bewegungsverhalten und neuromuskuläre Aktivierung. Neu-Isenburg; LinguaMed 1997
  • 24 Holland B S, Copenhaver M D. Improved Bonferoni-type multiple testing procedures.  Psychol Bull. 1988;  104 145-149
  • 25 Rutherford O M, Jones D A, Newham D J. Clinical and experimental application of the percutaneous twitch superimposition technique for the study of human muscle activation.  J Neurol Neurosurg Psych. 1986;  49 1288-1291
  • 26 Yack H J, Collins C E, Whieldon T J. Comparison of closed and open kinetic chain exercises in the anterior cruciate ligament deficient knee.  Am J Sports Med. 1993;  21 49-54
  • 27 Yasuda K, Sasaki T. Exercise after cruciate ligament reconstruction - The force exerted on the tibia by the seperate isometric contractions of the quadriceps or the hamstrings.  Clin Orth Rel Res. 1987;  7 275-283
  • 28 McNeal D R, Baker L L, Hammer D, Martin C, Mori K, O'Brien C, Pitman S, Van der Hoeven N. Optimizing electrode placements and joint angle for electrical stimulation programs at the knee.  Phys Ther. 1986;  66 807-812
  • 29 Strauss C R, DeDomenico C. Torque productions in human upper and lower limb muscles with voluntary and electrically stimulated contractions.  Australian J Physioth. 1986;  32 38-46
  • 30 Kukulka C C, Clamann H P. Comparison of the recruitment and discharge properties of motor units in human brachial biceps and adductor pollicis during isometric contractions.  Brain Research. 1981;  219 45-55
  • 31 Freund H J. Motor unit and muscle activity in voluntary motor control.  Physiol Rev. 1983;  63 387-436
  • 32 De Luca C J. Control properties of motor units.  J Exp Biol. 1985;  115 125-136
  • 33 Kent-Braun J A, Le Blanc R. Quantification of central activation failure during maximal voluntary contractions in humans.  Muscle Nerve. 1996;  19 861-869
  • 34 Strojnik V. Muscle activation level during maximum voluntary effort.  Eur J Appl Physiol. 1995;  72 144-149
  • 35 Belanger A Y, McComas A J. Extent of motor unit activation during effort.  J Appl Physiol. 1981;  51 1131-1135
  • 36 Hales J P, Gandevia S C. Assessment of maximal voluntary contraction with twitch interpolation: an instrument to measure twitch responses.  J Neurosci Meth. 1988;  25 97-102

Dr. phil. Klaus Pfeifer

Johann-Wolfgang-Goethe-Universität Frankfurt/Main
Abteilung Sportmedizin

Ginnheimer Landstraße 39

60487 Frankfurt am Main

eMail: K.Pfeifer@sport.uni-frankfurt.de

    >