Zusammenfassung.
Stickstoffmonoxid (NO) ist als universelles Signaltransduktionsmolekül, wie vielfach
belegt, auch an der Entstehung und Verarbeitung von Schmerzsignalen beteiligt. Die
meisten dazu erhobenen tierexperimentellen Befunde sowie die wenigen Beobachtungen
am Menschen deuten darauf hin, dass NO hauptsächlich dann eine Rolle spielt, wenn
eine begleitende Entzündung vorliegt. Für den Akutschmerz sowie den chronischen Schmerz
ohne ausgeprägte Entzündungskomponente hat das NO-System hingegen kaum Bedeutung;
der in diesem Zusammenhang dennoch gelegentlich beobachtete antihyperalgetische Effekt
von NO-Synthese-Inhibitoren lässt sich vor allem auf ihre vasokonstriktorische Nebenwirkung
zurückführen. Bisher ist unklar, ob sich spezifische Beeinflussung der NO-Synthese
oder -Wirkung zur Therapie oder Prophylaxe von Entzündungsschmerz beim Menschen nutzen
lässt.
The Significance of Nitrogen Monoxide (NO) Concerning Nociception and Spinal Pain
Processing.
Nitric oxide (NO) has been shown to be involved in the generation and processing of
pain signals. Most experimental studies on animals and also the few observations in
humans point to an involvement of the NO-system in inflammatory pain, whereas acute
pain and chronic pain without inflammatory component seem to be independent of NO.
It is yet unknown whether specific inhibition of the NO pathway is useful for treatment
or prevention of inflammatory pain in humans.
Schlüsselwörter:
NO - Schmerz - Sensibilisierung - Übersicht
Key words:
NO - Pain - Sensitization - Review
Literatur
- 1
Tjolsen A. et al .
The formalin test: an evaluation of the method.
Pain.
1992;
51
5-17
- 2
Moore P K. et al .
7-Nitro indazole, an inhibitor of nitric oxide synthase, exhibits anti-nociceptive
activity in the mouse without increasing blood pressure.
Br J Pharmacol.
1993;
108
296-297
- 3
Moore P K. et al .
L-NG-nitro arginine methyl ester exhibits antinociceptive activity in the mouse.
Br J Pharmacol.
1991;
102
198-202
- 4
Malmberg A B, Yaksh T L.
Spinal nitric oxide synthesis inhibition blocks NMDA-induced thermal hyperalgesia
and produces antinociception in the formalin test in rats.
Pain.
1993;
54
291-300
- 5
Yamamoto T, Shimoyama N, Mizuguchi T.
Nitric oxide synthase inhibitor blocks spinal sensitization induced by formalin injection
into the rat paw.
Anesth Analg.
1993;
77
886-890
- 6
Meller S T, Gebhart G F.
Nitric oxide (NO) and nociceptive processing in the spinal cord.
Pain.
1993;
52
127-136
- 7
Meller S T. et al .
The role of nitric oxide in the development and maintenance of the hyperalgesia produced
by intraplantar injection of carrageenan in the rat.
Neuroscience.
1994;
60
367-374
- 8
Haley J E, Dickenson A H, Schachter M.
Electrophysiological evidence for a role of nitric oxide in prolonged chemical nociception
in the rat.
Neuropharmacology.
1992;
31
251-258
- 9
Radhakrishnan V, Henry J L.
L-NAME blocks responses to NMDA, substance P and noxious cutaneous stimuli in cat
dorsal horn.
Neuroreport.
1993;
4
323-326
- 10
Ma Q P, Woolf C J.
Noxious stimuli induce an N-methyl-D-aspartate receptor-dependent hypersensitivity
of the flexion withdrawal reflex to touch: implications for the treatment of mechanical
allodynia.
Pain.
1995;
61
383-390
- 11
Malmberg A B, Yaksh T L.
Cyclooxygenase inhibition and the spinal release of prostaglandin E2 and amino acids
evoked by paw formalin injection: a microdialysis study in unanesthetized rats.
J Neurosci.
1995;
15
2768-2776
- 12
Malmberg A B, Yaksh T L.
The effect of morphine on formalin-evoked behaviour and spinal release of excitatory
amino acids and prostaglandin E2 using microdialysis in conscious rats.
Br J Pharmacol.
1995;
114
1069-1075
- 13
Muth-Selbach U S. et al .
Acetaminophen inhibits spinal prostaglandin E2 release after peripheral noxious stimulation.
Anesthesiology.
1999;
91
231-239
- 14
Scheuren N. et al .
Peripheral noxious stimulation releases spinal PGE2 during the first phase in the
formalin assay of the rat.
Life Sci.
1997;
60
295-300
- 15
Ferreira S H, Lorenzetti B B.
Intrathecal administration of prostaglandin E2 causes sensitization of the primary
afferent neuron via the spinal release of glutamate.
Inflamm Res.
1996;
45
499-502
- 16
Minami T. et al .
Allodynia evoked by intrathecal administration of prostaglandin E2 to conscious mice.
Pain.
1994;
57
217-223
- 17
Uda R. et al .
Nociceptive effects induced by intrathecal administration of prostaglandin D2, E2,
or F2 alpha to conscious mice.
Brain Res.
1990;
510
26-32
- 18
Park Y H. et al .
The role of nitric oxide and prostaglandin E2 on the hyperalgesia induced by excitatory
amino acids in rats.
J Pharm Pharmacol.
2000;
52
431-436
- 19 Geisslinger G, Yaksh T L.
Spinal actions of cyclooxygenase inhibitors. Devor M, Rowbotham MC, Wiesenfeld-Hallin Z (Editors) Proceedings of the 9th World
Congress on Pain, Progress in Pain Research and Management. IASP Press 2000: 771-785
- 20
Guhring H. et al .
Suppressed injury-induced rise in spinal prostaglandin E2 production and reduced early
thermal hyperalgesia in iNOS-deficient mice.
J Neurosci.
2000;
20
6714-6720
- 21
Corrado A P, Ballejo G.
Is guanylate cyclase activation through the release of nitric oxide or a related compound
involved in bradykinin-induced perivascular primary afferent excitation?.
Agents Actions Suppl.
1992;
36
238-250
- 22
Nakamura A, Fujita M, Shiomi H.
Involvement of endogenous nitric oxide in the mechanism of bradykinin-induced peripheral
hyperalgesia.
Br J Pharmacol.
1996;
117
407-412
- 23
Holthusen H, Ding Z.
Nitric oxide is not involved in vascular nociception of noxious physical stimuli in
humans.
Neurosci Lett.
1997;
227
111-114
- 24
Holthusen H.
Involvement of the NO/cyclic GMP pathway in bradykinin-evoked pain from veins in humans.
Pain.
1997;
69
87-92
- 25
Kindgen-Milles D, Arndt J O.
Nitric oxide as a chemical link in the generation of pain from veins in humans.
Pain.
1996;
64
139-142
- 26
Aley K O, McCarter G, Levine J D.
Nitric oxide signaling in pain and nociceptor sensitization in the rat.
J Neurosci.
1998;
18
7008-7014
- 27
Crosby G, Marota J J, Huang P L.
Intact nociception-induced neuroplasticity in transgenic mice deficient in neuronal
nitric oxide synthase.
Neuroscience.
1995;
69
1013-1017
- 28
Budzinski M. et al .
Inhibition of inducible nitric oxide synthase in persistent pain.
Life Sci.
2000;
66
301-305
- 29
Semos M L, Headley P M.
The role of nitric oxide in spinal nociceptive reflexes in rats with neurogenic and
non-neurogenic peripheral inflammation.
Neuropharmacology.
1994;
33
1487-1497
- 30
Moncada S, Palmer R M, Higgs E A.
Nitric oxide: physiology, pathophysiology, and pharmacology.
Pharmacol Rev.
1991;
43
109-142
- 31 Merskey H, Bogduk N. Classification of chronic pain: descriptions of chronic pain
syndromes and definitions of pain terms. Seattle. IASP Press 1994
- 32
Thomas D A. et al .
Application of nitric oxide synthase inhibitor, N omega-nitro-L-arginine methyl ester,
on injured nerve attenuates neuropathy-induced thermal hyperalgesia in rats.
Neurosci Lett.
1996;
210
124-126
- 33
Levy D, Zochodne D W.
Local nitric oxide synthase activity in a model of neuropathic pain.
Eur J Neurosci.
1998;
10
1846-1855
- 34
Levy D, Hoke A, Zochodne D W.
Local expression of inducible nitric oxide synthase in an animal model of neuropathic
pain.
Neurosci Lett.
1999;
260
207-209
- 35
Clatworthy A L. et al .
Role of peri-axonal inflammation in the development of thermal hyperalgesia and guarding
behavior in a rat model of neuropathic pain.
Neurosci Lett.
1995;
184
5-8
- 36
Inoue T. et al .
Rapid development of nitric oxide-induced hyperalgesia depends on an alternate to
the cGMP-mediated pathway in the rat neuropathic pain model.
Brain Res.
1998;
792
263-270
- 37
Luo Z D. et al .
Neuronal nitric oxide synthase mRNA upregulation in rat sensory neurons after spinal
nerve ligation: lack of a role in allodynia development.
J Neurosci.
1999;
19
9201-9208
- 38
Choi Y. et al .
Neuropathic pain in rats is associated with altered nitric oxide synthase activity
in neural tissue.
J Neurol Sci.
1996;
138
14-20
- 39
Steel J H. et al .
Increased nitric oxide synthase immunoreactivity in rat dorsal root ganglia in a neuropathic
pain model.
Neurosci Lett.
1994;
169
81-84
- 40
Pan H L, Chen S R, Eisenach J C.
Role of spinal NO in antiallodynic effect of intrathecal clonidine in neuropathic
rats.
Anesthesiology.
1998;
89
1518-1523
- 41 Devor M, Seltzer Z.
Pathophysiology of damaged nerves in relation to chronic pain. In: Wall P, Melzack R (Editors) Textbook of Pain. Churchill Livingstone 1999: 29-65
- 42
Hallin Z. et al .
Nitric oxide mediates ongoing discharges in dorsal root ganglion cells after peripheral
nerve injury.
J Neurophysiol.
1993;
70
2350-2353
- 43
Häbler H J. et al .
Responses of axotomized afferents to blockade of nitric oxide synthesis after spinal
nerve lesion in the rat.
Neurosci Lett.
1998;
254
33-36
- 44 Cousins M, Power I.
Acute and postoperative pain. In: Wall P, Melzack R (Editors) Textbook of Pain. Churchill Livingstone 1999: 447-491
- 45
Nakamura A, Shiomi H.
Recent advances in neuropharmacology of cutaneous nociceptors.
Jpn J Pharmacol.
1999;
79
427-431
- 46
Bennett G J, Xie Y K.
A peripheral mononeuropathy in rat that produces disorders of pain sensation like
those seen in man.
Pain.
1988;
33
87-107
- 47
Kim S H, Chung J M.
An experimental model for peripheral neuropathy produced by segmental spinal nerve
ligation in the rat.
Pain.
1992;
50
355-363
- 48
Seltzer Z, Dubner R, Shir Y.
A novel behavioral model of neuropathic pain disorders produced in rats by partial
sciatic nerve injury.
Pain.
1990;
43
205-218
Priv.-Doz. Dr. H. Holthusen
Heinrich-Heine-Universität Düsseldorf
Zentrum für Anaesthesiologie
Moorenstraße 5
40225 Düsseldorf
Email: Holthusen@med.uni-duesseldorf.de