Zusammenfassung
Periovulatorisch kommt es zu einer Muttermundsöffnung auf 1 - 2 cm und zu einer Verflüssigung
des Zervixschleims. Hierfür könnte der vascular endothelial growth factor (VEGF),
der angiogenetisch wirkt und die Gefäßpermeabilität erhöht, eine entscheidende Rolle
spielen. Daher haben wir VEGF in endozervikalen Gewebeproben und im Zervixschleim
während des Menstruationszyklus untersucht.
Patientinnen und Methoden
Bei 20 prämenopausalen Patientinnen mit regelmäßigen Zyklen wurden im Rahmen von Hysterektomien
Mukus und endozervikale Gewebeproben entnommen. Gemäß der Zyklusanamnese, der Endometriumdatierung
und den Progesteronwerten befanden sich 8 Patientinnen in der Proliferationsphase
(Tag 1 - 12), 5 in der periovulatorischen Phase (Tag 12 - 16) und 7 in der Sekretionsphase
(Tag 17 - 28). Paraffinschnitte wurden mit einem VEGF-Antikörper angefärbt, die Zervixschleimproben
mittels ELISA auf VEGF untersucht. Die statistische Auswertung erfolgte mit Hilfe
des Wilcoxon 2-Sample-Tests, wobei ein p-Wert < 0,05 als signifikant erachtet wurde.
Ergebnisse
In der frühen Follikelphase zeigte sich eine deutliche VEGF-Anfärbung des Zervixepithels
basal, gefolgt von einer stärkeren Anfärbung des apikalen Anteils des Zervixepithels.
In dieser periovulatorischen Phase fanden sich auch eine erhöhte VEGF-Sekretion im
Zervixschleim (97 pg/mg Gesamtprotein; p < 0,05) und eine stärkere VEGF-Stromareaktion.
Nach der Ovulation war VEGF im Epithel zunächst nur noch schwach nachweisbar, nahm
aber in der mittleren und späten Sekretionsphase wieder zu.
Schlussfolgerung
Periovulatorisch kommt es offensichtlich zu einer maximalen Sekretion von VEGF aus
dem Zervixepithel in den Mucus und das Zervixstroma. Dies könnte zu einer Verflüssigung
des Mukus und zu den Umbauvorgängen im Rahmen der Muttermundsöffnung beitragen.
Summary
Objective
Around the time of ovulation the cervix opens and the cervical mucus liquefies. Vascular
endothelial growth factor (VEGF), a potent inductor of vascular permeability, may
play a role in these changes. We examined VEGF in cervical tissue specimens and cervical
mucus at different stages of the menstrual cycle.
Methods
Samples of tissue and mucus from the uterine cervix were obtained from specimens from
20 premenopausal patients undergoing hysterectomy. Eight uteri were removed during
the follicular phase (day 1 - 8), five in the periovulatory phase (day 12 - 16), and
seven in the secretory phase (day 17 - 28). Paraffin-embedded slides were stained
with a VEGF antibody covering the splicing variants 165, 189 and 121. Cervical mucus
was examined for VEGF 165 with an enzyme-linked immunoassay. Data were analyzed with
the Wilcoxon two-sample test.
Results
Uteri in the early proliferative phase showed distinct VEGF staining of the basal
epithelium of the cervix. During the late follicular and periovulatory phases, staining
in the apical epithelium and cervical stroma increased and the VEGF concentration
in the cervical mucus was highest (97 pg/mg total protein). After ovulation VEGF in
the epithelium fell sharply, to then reappear in the mid and late secretory phase.
Conclusion
VEGF increases in the cervical stroma around the time of ovulation and may play a
role in the liquefaction of the cervical mucus and tissue edema. These changes are
likely involved with the opening of the cervix at near the time of ovulation.
Literatur
1
Bokström H, Brännström M, Alexandersson M, Norström A.
Leukocyte subpopulations in the human uterine cervical stroma at early and term pregnancy.
Hum Reprod.
1997;
12
586-590
2
Brown L F, Detmar M, Tognazzi K, Abu-Jawdeh G, Iruela-Arispe M L.
Uterine smooth muscle cells express functional receptors (flt-1 and KDR) for vascular
permeability factor/vascular endothelial growth factor.
Lab Invest.
1997;
76
245-255
3
Charnock-Jones S, Sharkey A M, Rajput-Williams J, Burch D, Schofield J P, Fountain S A,
Boocock C A, Smith S K.
Identification and localization of alternately spliced mRNAs for vascular endothelial
growth factor in human uterus and estrogen regulation in endometrial carcinoma cell
lines.
Biol Reprod.
1993;
48
1120-1128
4
Classen-Linke I, Alfer J, Krusche C A, Chwalisz K, Rath W, Beier H M.
Progestins, progesterone receptor modulators, and progesterone antagonists change
VEGF release of endometrial cells in culture.
Steroids.
2000;
65
763-771
5
Cullinan-Bove K, Koos R D.
Vascular endothelial growth factor/vascular permeability factor expression in the
rat uterus. Rapid stimulation by estrogen correlates with estrogen-induced increases
in uterine capillary permeability and growth.
Endocrinology.
1993;
133
829-837
6
De M, Sanford T R, Wood G W.
Interleukin-1, Interleukin-6, and tumor necrosis factor alpha are produced in the
mouse uterus during the estrous cycle and are induced by estrogen and progesterone.
Dev Biol.
1992;
151
297-305
7
Dvorak H F, Detmar M, Claffey K P, Nagy J A, van de Water L, Senger D R.
Vascular permeability factor/vascular endothelial growth factor: an important mediator
of angiogenesis in malignancy and inflammation.
Int Arch Allergy Immunol.
1995;
107
233-235
8
Eggert-Kruse W.
Funktionen der Cervix uteri für die Fertilität.
Der Gynäkologe.
1997;
30
53-68
9
Franklin R D, Kutteh W H.
Characterization of immunoglobulins and cytokines in human cervical mucus: influence
of exogenous and endogenous hormones.
J Reprod Immunol.
1999;
42
93-106
10
Hyder S M, Stancel G M, Chiappetta C, Murthy L, Boettger-Tong H, Makela S.
Uterine expression of vascular endothelial growth factor is increased by estradiol
and tamoxifen.
Cancer Research.
1996;
56
3954-3960
11
Iruela-Arispe M L, Dvorak H F.
Angiogenesis: a dynamic balance of stimulators and inhibitors.
Thrombosis and haemostasis.
1997;
78
672-677
12
Jackson J R, Minton J A, Ho M L, Wei N, Winkler J D.
Expression of vascular endothelial growth factor in synovial fibroblasts is induced
by hypoxia and interleukin 1 beta.
J Rheumatol.
1997;
24
1253-1259
13
Kanai T, Fukuda-Miki M, Shimoya K, Azuma C, Hashimoto K, Nobunaga T, Tokugawa Y, Tsujimoto M,
Saji F, Murata Y.
Increased interleukin-1 and interleukin-1 receptor antagonist levels in cervical mucus
in the ovulatory phase in comparison with the follicular phase.
Gynecol Obstet Invest.
1997;
43
166-170
14
Kemp B, Classen-Linke I, Ruck P, Winkler M, Beier H M, Rath W.
Cell populations in the human uterine cervix during midcyclic cervical opening.
Geburtsh Frauenheilk.
1998;
58
547-550
15
Kover K, Liang L, Andrews G K, Dey S K.
Differential expression and regulation of cytokine genes in the mouse uterus.
Endocrinology.
1995;
136
1666-1673
16
Leek R D, Harris A L, Lewis C E.
Cytokine networks in solid human tumors: regulation of angiogenesis.
J Leukoc Biol.
1994;
56
423-435
17
Levitas E, Chamoun D, Udoff L C, Ando M, Resnick C E, Adashi E Y.
Periovulatory and interleukin-1 beta-dependent up-regulation of intraovarian vascular
endothelial growth factor (VEGF) in the rat: potential role for VEGF in the promotion
of periovulatory angiogenesis and vascular permeability.
J Soc Gynecol Investig.
2000;
7
51-60
18
Li X Y, Gregory J, Ahmed A.
Immunohistochemical localisation of vascular endothelial growth factor in human endometrium.
Growth Factors.
1994;
11
277-282
19 Lunenfeld B, Insler V, Glezermann M. Diagnosis and treatment of functional infertility.
3rd rev. ed. Berlin; Blackwell Wissenschaft 1993
20
Nathan C F.
Secretory products of macrophages.
J Clin Invest.
1987;
79
319-320
21
Ogawa M, Hirano H, Tsubaki H, Kodama H, Tanaka T.
The role of cytokines in cervical ripening: Correlation between the concentrations
of cytokines and hyaluronic acid in cervical mucus and the induction of hyaluronic
acid production by inflammatory cytokines by human cervical fibroblasts.
Am J Obstet Gynecol.
1998;
179
105-110
22
Reimer T, Friese K.
Aktuelle Erkenntnisse zur Bedeutung der Zytokine bei der Wehenentstehung.
Geburtsh Frauenheilk.
2000;
60
182-186
23
Sharkey A M, Charnock-Jones D S, Boocock C A, Brown K D, Smith S K.
Expression of mRNA for vascular endothelial growth factor in human placenta.
J Reprod Fertil.
1993;
99
609-615
24
Shifren J L, Doldi N, Ferrara N, Mesiano S, Jaffe R B.
In the human fetus, vascular endothelial growth factor is expressed in epithelial
cells and myocytes, but not vascular endothelium: Implications for mode of action.
J Clin Endocrinol Met.
1994;
79
316-322
25
Shifren J L, Tseng J F, Zaloudek C J.
Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium:
Implications for angiogenesis during the menstrual cycle and in the pathogenesis of
endometriosis.
J Clin Endocrinol Metab.
1996;
81
3112-3118
26
Thomson A J, Telfer J F, Young A, Campbell S, Stewart C JR, Cameron I T. et al .
Leukocytes infiltrate the myometrium during human parturition: further evidence that
labour is an inflammatory process.
Hum Reprod.
1999;
14
229-236
27
Wang W, Merrill M J, Borchardt R T.
Vascular endothelial growth factor affects permeability of brain microvessel endothelial
cells in vitro.
Am J Physiol.
1996;
271
1973-1980
Dr. Prof. Dr. Birgit Kemp W. Rath
Frauenklinik des Universitätsklinikums Aachen
Pauwelsstr. 30
52057 Aachen
eMail: birgit.kemp@post.klinikum.rwth-aachen.de