Horm Metab Res 2001; 33(10): 585-589
DOI: 10.1055/s-2001-17904
Original Clinical
© Georg Thieme Verlag Stuttgart · New York

Elevated Prolactin to Cortisol Ratio and Polyclonal Autoimmune Activation in Hashimoto’s Thyroiditis

I. Legakis1 , V. Petroyianni2 , A. Saramantis2 , G. Tolis1
  • 1 Department of Endocrinology, “Hippokrateion” General Hospital, Athens, Greece
  • 2 Laboratory of Biopathology, Institute of Medical Technology, Athens, Greece
Further Information

Publication History

Publication Date:
18 October 2001 (online)

Cortisol and prolactin, which are considered to have an immunomodulatory effect, and selected autoantibodies were determined in Hashimoto’s thyroiditis. 37 patients (8 males and 29 females) (54 ± 13.8 years) and an equal number of sex- and age-matched normal subjects (52.6 ± 14.2 years) were studied. None of the 74 subjects suffered from any other immunological, infectious, hepatic, renal or malignant diseases. Patients with Hashimoto’s thyroiditis exhibited significantly higher (p < 0.016) prolactin values (14.0 ± 3.8 ng/ml) than did control subjects (6.5 ± 1.3 ng/ml). In contrast, cortisol levels were lower in Hashimoto’s thyroiditis (13.5 ± 3.2 µg/dl) vs. normal state (16.0 ± 1.13 µg/dl), (p < 0.05). The prevalence of anti-TPO and anti-Tg antibodies was 100 % and 43 % in the patients with Hashimoto’s disease. In contrast, no subject of the control group was positive for anti-TPO, although 9 subjects (24 %) were positive for anti-Tg autoantibodies. The percentage of positive autoantibodies to nucleous, smooth-muscle, and parietal cells in the patients (36.0, 10.9 and 18.5 %, respectively) was higher than that in healthy group (11.0 and 0 % respectively). Notably, neither group was positive for antibodies against double-stranded DNA or mitochondria. In conclusion, our results provide evidence for a polyclonal activity in Hashimoto’s thyroiditis, an organ-specific autoimmune disease, associated with an altered prolactin-adrenocortical status. Such information should initiate longitudinal studies to clarify the exact time sequence of these events related to the disease’s activity.


  • 1 Chikanra E C. Prolactin and neuroimuunomodulation in vitro and in vivo observations.  Ann NY Acad Sci. 1999;  876 119-130
  • 2 Kline J B, Roehrs H, Clevenger C V. Functional characterization of the intermediate isoform of the human prolactin receptor.  J Biol Chem. 1999;  274 35 461-35 468
  • 3 Goffin V, Binart N, Clement-Lacroix P, Bouchard B, Bole-Feysot Loucas B K, Touraine P, Pezet A, Maaskant R, Pichard C, Helloco C, Favre H, Bernichtein S, Allamando A, Ormandy C, Kelly P A. From the molecular biology of prolactin and its receptor to lessons learned from knock out mice models.  Genet Anal. 1999;  15 189-201
  • 4 Haga H J, Rugh T. The prevalence of hyperprolactinemia in patients with primary Sjogren’s syndrome.  J Rheumatol. 1999;  26 1291-1295
  • 5 Mok U, Lau C S, Lee K W, Wong R W. Hyperprolactinemia in males with systemic lupus erythematosus.  J Rheumatol. 1998;  25 2357-2363
  • 6 Neidhart M ichel. Elevated serum prolactin or elevated prolactin/cortisol ratio are associated with autoimmune processes in systemic lupus erythematosus and other connective tissue diseases.  The Journal of Rheumatology. 1996;  232 476-480
  • 7 Rovensky J, Lackovic V, Veselkova Z, Horvathova M, Koska J, Bl Vigas M. Plasma cytokine concentration and the cytokine producing whole blood cell cultures from healthy females with pharmacologically induced hyperprolactinemia.  Int J Tissue React. 1999;  21 43-49
  • 8 Funauchi M, Ikoma S, Enomoto H, Sugiyama M, Ohno M, Hamad Kanamaru A. Prolactin modulates the disease activity of systemic lupus erythematosus accompanied by prolactinoma.  Clin Exp Rheumatol. 1998;  16 479-482
  • 9 Rovensky J, Jurankova E, Rauova L, Blazickova S, Lukac J, Veselkova Z, Jezova D, Vigas M. Relationship between endocrine, immune, and clinical variables in patients with systemic lupus erythematosus.  V Rheumatol. 1997;  24 2330-2334
  • 10 Arthceya B H, Rettig P, Williams W V. Hypophyseal-pituitary-adrenal axis in autoimmune and rheumatic diseases.  Immunol Res. 1998;  18 93-102
  • 11 Cutierrez M A, Garcia M E, Rodriquez J A, Mardonoz G, Jacobelli S, Rivero S. Hypothalamic-pituitary-adrenal axis function in patients with active rheumatoid arthritis: a controlled study using insulin hypoglycemia stress test and prolactin stimulation.  J Rheumatol. 1999;  26 277-281
  • 12 Fiquern F, Carrion F, Martinez M E, Rivero S, Mamari I, Gonzalez G. Effect of bromocriptine in patients with active rheumatoid arthritis.  Rev Med Chil. 1998;  126 33-41
  • 13 McMurray R W, Allen S H, et al. Elevated serum prolactin levels in children with juvenile rheumatoid arthritis and antinuclear antibody seropositivity.  J Rheumatol. 1995;  22 1577-1584
  • 14 Allen S H, Share G C. Prolactin levels and antinuclear antibody profiles in women tested for connective tissue disease.  Lupus. 1996;  5 30-37
  • 15 Jara L J, Gomez-Sanchez G, Silveira L H, Martinez-Osuma P, Vasey F B, Espinoza L R. Hyperprolactinemia in systemic lupus erythematosus: association with disease activity.  Am J Med Sci. 1992;  303 222-226
  • 16 Johnson E O, Vlachoyiannopoulos P G, Skopouli F N, Tzioufas A G, Moutsopoulos H M. Hypofunction of the stress axis in Sjorgen’s syndrome.  J Rheumatol. 1998;  25 1508-1514
  • 17 Strenberg E M, Young WS I II, Bernardini R. A central nervous system defect in biosynthesis of corticotropin-releasing hormone is associated with susceptibility to streptococcal cell wall-induced arthritis in Lewis rats.  Proc Natl Acad Sci USA. 1989;  86 4771-4775
  • 18 Kirken R A, Evans G A, Duhe R J, Dasilva L, Malabarba M G, Erwin R A, Ferrar W L. Mechanisms of cytokine signal transduction: IL-2, IL-4 and prolactin as hematopoietic receptor models.  Vet Immunol Immunopathol. 1998;  63 27-36
  • 19 Theas M S, De Laurentis A, Lasage M, Pisera D, Duvilanski B HG, Seilcovich A. Effect of lipopolysacharide of tumor necrosis factor and prolactin release from fat rat anterior pituitary cells.  Endocrine. 1998;  8 241-245
  • 20 Meli R, Rasoli M, Gualillo O, Pacilio M, Di Carlo R. Prolactin modulation of nitric oxide and TNF-alpha production by peripheral neutrophils in rats.  Life Sci. 1997;  61 1395-1403
  • 21 Harel G, Shamoun D S, Kanae J P, Mogher J A, Srabo M. Prolonged effects of tumor necrosis factor alpha on anterior pituitary hormone release.  Peptide. 1995;  16 641-645
  • 22 Morita S, Arima T, Matsuda M. Prevalence of non-thyroid specific autoantibodies in autoimmune thyroid disease.  J Clin Endocrinol Metab. 1995;  80 1203-1206
  • 23 Katakura M, Yamada T, Aizawa T, Hiramatsu K, Yukimura Y, Ishihara M, Takasu N, Maruyama K, Kameko M, Kanai M, et al. Presence of antideoxyribonucleic acid antibody in patients with hyperthyroidism of Graves’ disease.  J Clin Enocrinol Metab. 1987;  64 405-408
  • 24 Tajiri J, Higashi K, Morita M, Ohishi S, Umeda T, Sato T. Elevation of anti-DNA antibody titer during thyrotoxic phase of silent thyroiditis.  Arch Intern Med. 1986;  146 1623-1624
  • 25 Tachi J, Amino N, Iwatani Y, Tamaki H, Mori M, Aozasa M, Tanizawa O, Miyai K. Increase in antideoxyribonucleic acid antibody titer in postpartum aggravation of autoimmune thyroid disease.  J Clin Endocrinol Metab. 1988;  67 1049-1053
  • 26 Wang J, Griggs N D, Tung K S, Klein J R. Dynamic regulation of gastric autoimmunity by thyroid hormone.  Int Immunol. 1998;  10 231-236
  • 27 Martini A, Lorini R, Zanaboni D, Ravelli A, Burgio R G. Autoantibodies in children.  Ann J Dis Child. 1989;  143 493-496
  • 28 Engler H, Riesen W F, Keller B. Diagnostic value of autoantibodies against microsomal thyroid peroxidase (anti-TPO).  Schweiz Med Wochenschr. 1992;  122 976-980
  • 29 Engler H, Riesen W, Keller B. Anti-thyroid peroxidase (anti-TPO) antibodies in thyroid diseases, non-thyroidal illness and controls. Clinical validity of a new commercial method for detection of anti-TOP (thyroid microsomal) autoantibodies.  Clin Chim Acta. 1994;  225 123-136
  • 30 Guo J, Rappojorf B, McLachlan S M. Thyroid peroxidase autoantibodies of IgE class in thyroid autoimmunity.  Clin Immunol Immunopathol. 1997;  82 157-162
  • 31 Weetman A C. New aspects of thyroid immunity.  Horm Res. 1997;  48 (Suppl. 4) 51-54
  • 32 Rodien P, Made A M, Ruf J, Rajas F, Bornet H, Carayon P, Orgiazzi J. Antibody-dependent cell-mediated cytotoxicity in autoimmune thyroid disease: relationship to antithyroperoxidase antibodies.  J Clin Endocrinol Metab. 1996;  81 2595-2600
  • 33 Chabchoub I, Makni H, Boulila-el Gaied A, Maalej A, Abid M, Jouida J, Ayadi H. Expression of the autoreactive Ig repertoire in a large family with high prevalence of thyroid autoimmune diseases.  Arch Inst Pasteur Tunis. 1996;  73 163-166
  • 34 McIntosh R S, Asghar M S, Watson P F, Kemp E H, Weetman A P. Cloning and analysis of IgG kappa and IgE lambda anti-thyroglobulin autoantibodies from a patient with Hashimoto’s thyroiditis: evidence for in vivo antigen-driven repertoire selection.  J Immunol. 1996;  157 927-935
  • 35 Brijhni B, Aanderud S, Sundsfjord J, Rekvig O T, Jorde R. Thyroid antibodies in northern Norway: prevalence persistence and relevance.  J Intern Med. 1996;  6 517-523
  • 36 Naito N, Saito K, Hosoya T, Tarutani O, Sakata S, Nishikawa T, Niimi H, Nakajima H, Kohno Y. Anti-thyroglobulin autoantibodies in sera from patients with chronic thyroiditis and from healthy subjects: differences in cross-reactivity with thyroid peroxidase.  Clin Exp Immunol. 1990;  80 4-10
  • 37 Shimojo N, Kohno Y, Tarutani O, Saraki N, Nakajima H. Enzyme-linked immunosorbent assay (ELISA) for IgG antibodies to thyroglobulin.  Clin Chim Acta. 1987;  163 41-49

Dr. I. Legakis

3rd Academic Department
Sortiria Hospital

27, Navarinou Str.
15562 Cholargos Athens

Phone: + 30 (1) 652665

Fax: + 30 (1) 7772253