Facial Plast Surg 2002; 18(1): 059-068
DOI: 10.1055/s-2002-19828
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Tissue Engineering with Chondrocytes

R. James Koch, Goutham Krishna Gorti
  • Division of Otolaryngology-Head and Neck Surgery, Stanford University Medical Center, Stanford, CA
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
29. Januar 2002 (online)

ABSTRACT

Tissue engineering of cartilage, using chondrocytes based on the use of synthetic biodegradable polymer cell delivery vehicles (scaffolds), is an alternate treatment modality for replacing missing cartilage.[1] [2] Cartilage tissue engineering has an important role to play in the generation of graft material for head and neck reconstruction. It is an approach to fabricate cartilage constructs in vitro, which could be used in reconstructive surgery. Methods involve (1) harvesting septal cartilage during septoplasty, (2) isolating chondrocytes through enzymatic digestion of the septal cartilage, (3) expanding the cell number in a two-dimensional monolayer culture, using serum-free media, (4) seeding the cells onto a biodegradable polymer scaffold, and (5) cultivating the seeded scaffolds in a rotating bioreactor. In this article we briefly outline the methodology and clinical applications of cartilage grown ex vivo.

REFERENCES

  • 1 Vacanti J P, Morse M A, Saltzman W M, Domb A J, Atayde A P, Langer R. Selective cell transplantation using bioresorbable artificial polymers as matrices.  J Pediatr Surg . 1998;  23 3-9
  • 2 Vacanti J P. Beyond transplantation.  Arch Surg . 1988;  123 545-549
  • 3 Nerem R M, Sambanis A. Tissue engineering from biology to biological substitutes.  Tiss Eng . 1995;  1 3-13
  • 4 Freed L E, Vunjak-Novakovic G, Biron R J. Biodegradable polymer scaffolds for tissue engineering.  Biotechnology . 1994;  12 689-693
  • 5 Freed L E, Vunjak Noakovic G. Tissue engineering of cartilage. In: CRC Biomedical Engineering Handbook Boca Raton, FL: CRC Press 1995: 1788-1806
  • 6 Nehrer S. Characteristics of articular chondrocytes seeded in collagen matrices in vitro.  Tiss Eng . 1998;  4 175-183
  • 7 Gunter J P, Clark C P, Friedman R M. Internal stabilization of autogenous rib cartilage grafts in rhinoplasty: a barrier to cartilage warping.  Plast Reconstr Surg . 1997;  100 161-169
  • 8 Puelacher W C, Kim S W, Vacanti J P, Schloo B, Mooney D, Vacanti C A. Tissue engineered growth of cartilage.  Int J Oral Maxillofac Surg . 1994;  23 49-53
  • 9 Lanza R, Langer R, Chick W L. Principles of Tissue Engineering.  Austin, TX: RC Landes 1997: 481-514
  • 10 Puelacher W C, Vacanti J P, Kim S W, Upton J, Vacanti C A. Fabrication of nasal implants using human shape-specific polymer scaffolds seeded with chondrocytes.  Surg Forum . 1993;  44 678-680
  • 11 Lanza R, Langer R, Chick W L. In: Principles of Tissue Engineering Austin, TX: RC Landes 1997: 302
  • 12 Merrill R G. Preface disorders of the TMJ II: arthrotomy.  Oral Surg Oral Med Oral Pathol . 1989;  1 16
  • 13 Wistenberg B, Freihofer H PM. Replacement of the pathological temporomandibular articular disc using autogenous cartilage of the external ear.  Int J Oral Surg . 1984;  13 401
  • 14 Lanza R, Langer R, Chick W L. Principles of Tissue Engineering.  Austin, TX: RC Landes 1997: 493
  • 15 Paige K T, Cima L G, Yaremchuck M J, Vacanti J P, Vacanti C A. Injectable cartilage.  Plast Reconstr Surg . 1995;  96 1390-1398
  • 16 Ting V, Sims C D, Brecht L E. In vitro prefabrication of human cartilage shapes using fibrin glue and human chondrocytes.  Ann Plast Surg . 1998;  40 413-421
  • 17 Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.  N Engl J Med . 1994;  331 889-895
  • 18 Freed L E, Vunjak Noakovic G, Langer R. Cultivation of cell-polymer cartilage implants in bioreactors.  J Cell Biochem . 1994;  51 257-264
  • 19 Mooney D J, Mikos A G. Growing new organs.  Sci Am . 1999;  280 60-65
  • 20 Vetter U, Pirsig W, Helbing G, Heit W, Heinz E. Patterns of growth in human septal cartilage: a review of new approaches.  Int J Pediatr Otolaryngol . 1984;  7 63-74
  • 21 Nerem R M. Cellular engineering.  Ann Biomed Eng . 1991;  19 529-545
  • 22 Buckner P, Hoerler I, Mendler M. Induction and prevention of chondrocyte hypertrophy in culture.  J Cell Biol . 1989;  109 2537-2545
  • 23 Rosselot G, Reginato A M, Leach R M. Development of a serum-free system to study the effect of growth hormone and insulin-like growth factor-1 on cultured postembryonic growth plate chondrocytes.  In Vitro Cell Dev Biol . 1992;  28A 235-244
  • 24 Dunham B P, Koch R J. Basic fibroblast growth factor and insulin-like growth factor-1 support the growth of human nasal septal chondrocytes in a serum-free environment.  Arch Otolaryngol Head Neck Surg . 1998;  124 1325-1330
  • 25 Trippel S. Growth factor actions on articular cartilage.  J Rheumatol . 1995;  22 129-132
  • 26 Bujia J, Pitzke P, Kastenbauer E, Wilmes E, Hammer C. Effect of growth factors on matrix synthesis by human nasal chondrocytes cultured in monolayer and in agar.  Eur Arch Otorhinolaryngol . 1996;  253 336-340
  • 27 Yaeger P, Masi T L, de Ortiz L J, Binette F, Tubo R, McPherson J M. Synergistic action of transforming growth factor beta and insulin-like growth factor induces expression of type II collagen and aggrecan genes in adult human articular chondrocytes.  Exp Cell Res . 1997;  15 318-325
  • 28 Bujia J, Sittinger M, Wilmes E, Hammer C. Effect of growth factor on cell proliferation by human nasal septal chondrocytes cultured in monolayer.  Acta Otolaryngol . 1994;  114 539-543
  • 29 Zimber M, Tong B, Dunkelman N, Pavelec R, Grande D, New L, Purchio A F. TGF-β promotes the growth of bovine chondrocytes in monolayer culture and the formation of cartilage tissue on three-dimensional scaffolds.  Tiss Eng . 1995;  1 289-300
  • 30 Kato Y, Gospodarowicz D. Sulfated proteoglycan synthesis by confluent cultures of rabbit costal chondrocytes grown in the presence of fibroblast growth factor.  J Cell Biol . 1985;  100 477-485
  • 31 Martin G, Vunjak-Novakovic G, Yang J, Langer R, Freed L E. Mammalian chondrocytes expanded in the presence of fibroblast growth factor 2 maintain the ability to differentiate and regenerate three-dimensional cartilaginous tissue.  Exp Cell Res . 1999;  253 681-688
  • 32 Trippel S B, Wroblewski J, Makower A M, Whelan M C, Schoenfeld D, Doctrow S R. Regulation of growth-plate chondrocytes by insulin-like growth-factor 1 and basic fibroblast growth factor.  J Bone Joint Surg . 1993;  75 177-189
  • 33 Deshmukh K, Kline W G. Characterization of collagen and its precursors synthesized by rabbit-articular-cartilage cells in various culture systems.  Eur J Biochem . 1976;  69 117-126
  • 34 Kato Y, Gospodarowicz D. Effect of exogenous extracellular matrices on proteoglycan synthesis by cultured rabbit costal chondrocytes.  J Cell Biol . 1985;  100 486-495
  • 35 Hay E D, Sugrue S P. Binding of ECM factors to cell receptor.  J Cell Biol . 1981;  91 205S-223S
  • 36 Folkman J, Moscona A. Role of cell shape in growth control.  Nature . 1978;  273 345-349
  • 37 Shannon J M, Pitelka D R. The influence of cell shape on the induction of functional differentiation in mouse mammary cells in vitro.  In Vitro . 1981;  17 1016-1028
  • 38 Bates G P, Schor S L, Grant M E. A comparison of the effects of different substrata on chondrocyte morphology and the synthesis of collagen types IX and X.  In Vitro Cell Dev Biol . 1987;  23 374-380
  • 39 Yayon A, Klagsbrun M, Esko J D, Leder P, Ornitz D M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor, Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel.  Cell . 1991;  64 841-848
  • 40 Gorti G K, Lo J, Falsafi S, Kosek J, Lum J, Koch R J. Tissue engineering of human septal cartilage using cryogenically preserved chondrocytes.  Tiss Eng (In Press).
  • 41 Khu D, Gorti G K, Koch R J. The efficacy of PDS as a scaffolding material in the tissue engineering of cartilage.  Tiss Eng (In Press).
  • 42 Goodwin T J, Prewett T L, Wolf D A, Spaulding G F. Reduced stress: a major component in the ability of mammalian tissue to form three-dimensional assemblies in simulated microgravity.  J Cell Biochem . 1993;  51 301-311
  • 43 Vunjak-Novakovic G, Freed L E, Biron R J, Langer R. Effects of mixing on the composition and morphology of tissue-engineered cartilage.  AIChE J . 1996;  42 850-860
  • 44 Freed L E, Hollander A P, Martin I, Barry J R, Langer R, Vunjak-Novakovic G. Chondrogenesis in a cell-polymer-bioreactor system.  Exp Cell Res . 1998;  240 58-65
  • 45 Duke P J, Daane E L, Montufar-Solis D. Studies of chondrogenesis in rotating systems.  J Cell Biochem . 1993;  51 274-282
  • 46 Spaulding G F, Jessup J M, Goodwin T J. Advances in cellular construction.  J Cell Biochem . 1993;  51 249-251
  • 47 Freed L E, Langer L, Martin I, Pellis N R, Vunjak-Novakovic G. Tissue engineering of cartilage in space.  Proc Natl Acad Sci USA . 1997;  94 13885-13890
  • 48 Tsao Y D, Goodwin T J, Wolf D A, Spaulding G F. Responses of gravity level variations on the NASA/JSC Bioreactor system.  Physiologist . 1992;  35 49-50
  • 49 Paulsen H U, Thomsen J S, Hougen H P, Mosekilde L A. A histomorphometric and scanning electron microscopy study of human condylar cartilage and bone tissue changes in relation to age.  Clin Orthoped Res . 1999;  2 67-78
  • 50 Verbruggen G, Cornelissen M, Almqvist K F. Influence of aging on the synthesis and morphology of the aggrecans synthesized by differentiated human articular chondrocytes.  Osteoarthrit Cartil . 2000;  8 170-179
  • 51 DeGroot J, Verzijil N, Bank R A, Lafeber F P, Bijlsma J W, TeKoppele J M. Age-related decrease in proteoglycan synthesis of human articular chondrocytes: the role of nonenzymatic glycation.  Arthrit Rheumatol . 1999;  42 1003-1009
  • 52 Falsafi S, Koch R J. Growth of human naso-septal analogs in simulated microgravity.  Arch Otolaryngol Head Neck Surg . 2000;  126 759-765
  • 53 Falsafi S, Lum J, Kosek J, Gorti G K, Koch R J. Serum-free tissue engineering of human septal cartilage.  Plast Reconstr Surg (In press).
  • 54 Klagsbrun M. Large-scale preparation of chondrocytes.  Methods Enzymol . 1979;  58 560-564
  • 55 Kim Y J, Sah R LY, Doong J YH, Grodzinsky A J. Flourometric assay of DNA in cartilage explants using Hoechst 33258.  Anal Biochem . 1988;  174 168-176
  • 56 Farndale R W, Buttle D J, Barrett A J. Improved quantitation and discrimination of sulfated glycosaminoglycans by the use of dimethylene blue.  Biochem Biophys Acta . 1986;  883 173-177
  • 57 Woessner Jr F J. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid.  Arch Biochem Biophys . 1961;  93 440-444
  • 58 Vunjak-Novakovic G, Obradovic B, Pedrag I M, Bursac M, Langer R, Freed L E. Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering.  Biotechnol Prog . 1998;  14 193-202
  • 59 Wakefield L M, Smith D M, Masui T, Harris C C, Sporn M B. Distribution and modulation of the cellular receptor for transforming growth factor-beta.  J Cell Biol . 1987;  105 965-997
  • 60 Frolik C A, Wakefield L M, Smith D M, Sporn M B. Characterization of a membrane receptor for transforming growth factor-B in normal rat kidney fibroblasts.  J Biol Chem . 1984;  259 10995-11000
  • 61 Ishi Y, Miyanaga Y, Shimojo H, Ushida T, Tateishi T. Effects of hyperbaric oxygen on procollagen messenger RNA levels and collagen synthesis in the healing of rat tendon laceration.  Tiss Eng . 1999;  5 279-286
  • 62 Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky A J, Langer R, Freed E. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage.  J Orthoped Res . 1999;  17 130-138
  • 63 Ma P X, Langer R. Morphology and mechanical function of long-term in vitro engineered cartilage.  J Biomed Mater Res . 1999;  44 217-211
    >