Abstract
Testosterone serum levels may influence the lipoprotein metabolism and possibly atherogenic
risk. Our aim was to investigate the effects of long-term testosterone supplementation
in hypogonadal men on multiple lipoprotein markers. 18 Hypogonadal men were studied
before and after 3, 6, and 18 (n = 7) months of treatment with testosterone enanthate.
During treatment, serum testosterone and estradiol increased, reaching normal levels
(p < 0.0001 and 0.003, respectively). This was associated with a decrease in HDL cholesterol
(from 1.40 ± 0.10 mmol/l to 1.22 ± 0.08 mmol/l, p < 0.001) after six months at the
expense of HDL2 cholesterol (p < 0.01), as well as apoprotein A1 (from 139 ± 3.4 mg/dl
to 126 ± 3.0 mg/dl, p < 0.005). Hepatic lipase activity increased (p < 0.05) and correlated
positively with testosterone (r = 0.56, p < 0.02) and negatively with HDL cholesterol
(r = - 0.58, p < 0.02). Total and LDL cholesterol, triglycerides, and apoprotein B
did not increase. Among the seven patients who completed 18 months of treatment, triglycerides,
total cholesterol, LDL and HDL cholesterol, as well as total cholesterol/HDL cholesterol
ratio values did not differ from baseline while apoprotein A1 (p < 0.03) and HDL cholesterol
(p < 0.015) remained decreased and hepatic lipase unchanged. Restoration of testosterone
levels in hypogonadal men in this study did not reveal unfavorable changes based on
total cholesterol/HDL cholesterol and LDL cholesterol/apoprotein B ratios, which are
both atherogenic risk markers. Whether the changes in light of lipoprotein metabolism
will adversely influence cardiovascular risk over time remains to be determined.
Key words
Hypogonadism - Testosterone Substitution - Lipids - Lipoproteins - Hepatic Lipase
1
Kirkland R T, Keenan B S, Probstfield J L, Patsch W, Lin T L, Clayton G W, Insull W
.
Decrease in plasma high-density lipoprotein cholesterol levels at puberty in boys
with delayed adolescence.
JAMA.
1987;
257
502-507
2
Haffner S M, Mykkänen L, Valdez R A, Katz M S.
Relationship of sex hormones to lipids and lipoproteins in nondiabetic men.
J Clin Endocrinol Metab.
1993;
77
1610-1615
3 Place V A.
Transdermal testosterone replacement through genital skin. In: Nieschlag E, Behre HM (eds) Testosterone: action, deficiency and substitution. Berlin;
Springer Verlag 1990: 165
4
Jockenhövel F, Bullmann C, Schubert M, Vogel E, Reinhardt W, Reinwein D, Müller-Wieland D,
Krone W.
Influence of various modes of androgen substitution on serum lipids and lipoproteins
in hypogonadal men.
Metabolism.
1999;
48 (5)
590-596
5
Behre H M, Nieschlag E.
Testosterone buciclate (20 Aet-1) in hypogonadal men: pharmacokinetics and pharmacodynamics
of the new long-acting androgen ester.
J Clin Endocrinol Metab.
1992;
75
1204-1210
6
Zgliczynski S, Ossowski M, Slowinska-Srzednicka J, Brzezinska A, Zgliczynski W, Soszynski P,
Chotkowska E, Srzednicki M, Sadowsdi Z.
Effect of testosterone replacement therapy on lipids and lipoproteins in hypogonadal
and elderly men.
Atherosclerosis.
1996;
121
35-43
7
Tripathy D, Shah P, Lakshmy R, Reddy K S.
Effect of testosterone replacement on whole body glucose utilisation and other cardiovascular
risk factors in males with idiopathic hypogonadotrophic hypogonadism.
Horm Metab Res.
1998;
30 (10)
642-645
8
Gutai J, LaPorte R, Kuller L, Dai F W, Falvo-Gerard L, Caggiula A.
Plasma testosterone, high density lipoprotein cholesterol and other lipoprotein fractions.
Cardiology.
1981;
48
897-902
9
Bagatell C J, Heiman J R, Matsumoto A M, Rivier J E, Bremner W J.
Metabolic and behavioral effect of high-dose, exogenous testosterone in healthy men.
J Clin Endocrinol Metab.
1994;
79
561-567
10
Sorva R, Kuusi T, Taskinen M R, Perheentupa J, Nikkila E A.
Testosterone substitution increases the activity of lipoprotein lipase and hepatic
lipase in hypogonadal males.
Atherosclerosis.
1988;
69
191-197
11
Brinton E A.
Oral estrogen replacement therapy in postmenopausal women selectively raises levels
and production rates of lipoprotein A-I and lowers hepatic lipase activity without
lowering the fractional catabolic rate.
Arterioscler Thromb Vasc Biol.
1996;
16
431-440
12
Applebaum-Bowden D, McLean P, Steinmetz A, Fontana D, Matthys C, Warnick G R, Cheung M,
Albers J J, Hazzard W R.
Lipoprotein, apolipoprotein, and lipolytic enzyme changes following estrogen administration
in postmenopauseal women.
J Lipid Res.
1989;
30
1895-1905
13
Kuusi T, Nikkila E A, Tikkanen M J, Sipinen S.
Effect of two progestins with different androgenic properties on hepatic endothelial
lipase and high density lipoprotein.
Atherosclerosis.
1985;
54
251-257
14
Enholm C, Huttunen J K, Kinnunen P J, Miettinen T A, Nikkila E A.
Effect of oxandrolone treatment on the activity of lipoprotein lipase, hepatic lipase
and phospholipase A1 of human postheparin plasma.
N Engl J Med.
1975;
292
1314-1317
15
Guendouzy K, Jaspard B, Barbaras R, Motta C, Vieu C, Marvel Y, Chap H, Perret B, Collet X.
Biochemical and physical properties of remnant-HDL2 and of preβ1-HDL produced by hepatic
lipase.
Biochemistry.
1999;
38
2762-2768
16
Assman A G, Jabs H, Kohnert U, Nolte W, Schriewer H.
LDL cholesterol determination in blood serum following precipitation of LDL with poly-vinil
sulphate.
Clin Chim Acta.
1984;
140
77-83
17
Warnick G R, Benderson J, Albers J J.
Dextran sulfate-Mg2+ precipitation for quantitation of high-density lipoprotein cholesterol.
Clin Chem.
1982;
28
1379-1388
18 Warnick G R.
Measurement and clinical significance of high density lipoprotein cholesterol: subclases. In: Rifai N, Warnick GR, Dominiczak MH (ed) Handbook of lipoprotein testing. AACC
Press 1997: 251-266
19
Castelli W P.
Epidemiology of coronary heart disease. The Framingham Study.
Am J Med.
1984;
76
4-12
20
Hattori Y, Susuki M, Tsuchima M, Yoshida M, Tokunaga Y, Wang Y, Zhao D, Takeuchi M,
Hara Y, Ryomoto K I, Ikebuchi M, Kishioka H, Mannami T, Baba S, Harano Y.
Development of approximate formula for LDLcholesterol, LDLapoB and LDLcholesterol/LDL
apoB as indices of hyperapobetaliporoteinemia and small dense LDL.
Atherosclerosis.
1998;
138
289-299
21
Capell W H, Zambon A, Austin M A, Brunzell J D, Hokanson J E.
Compositional differences of LDL particles in normal subjects with LDL subclass phenotype
A and LDL subclass phenotype B.
Arterioscler Thromb Vasc Biol.
1996;
16
1040-1046
22
Berg G, Siseles N, González A I, Contreras Ortiz O, Tempone A, Wikinski R.
Higher values of hepatic lipase activity in postmenopause: relationship with atherogenic
intermediate density and low density lipoproteins.
Menopause.
2001;
8 (2)
51-57
23
Wang C, Eyre D R, Clark R, Kleinberg D, Newman C, Iranmanesh A, Veldhuis J, Dudley R E,
Berman N, Davidson T, Barstow T J, Sinow R, Alexander G, Swerdloff R S.
Sublingual testosterone replacement improves muscle mass and strength, decreases bone
resorption, and increases bone formation markers in hypogonadal men-a clinical research
center study.
J Clin Endocrinol Metab.
1996;
81
3654-3662
24
Sih R, Morley J E, Kaiser F E, Perry III H M , Patrick P, Ross C.
Testosterone replacement in older hypogonadal men: a 12-month randomized controlled
trial.
J Clin Endocrinol Metab.
1997;
82
1661-1667
25
Burris A S, Banks S M, Carter C S, Davidson T M, Sherins R J.
A long-term, prospective study of the physiologic and behavioral effects of hormone
replacement in untreated hypogonadal men.
J Androl.
1992;
13
297-304
26
Goldberg R B, Rabin D, Alexander A N, Doelle G C, Getz G S.
Suppression of plasma testosterone leads to an increase in serum total and high density
lipoprotein cholesterol and apoproteins-A-1 and B.
J Clin Endocrinol Metab.
1992;
116
967-973
27
Partsch C J, Weinbauer G F, Fang R, Nieschlag E.
Injectable testosterone undecanoate has more favourable pharmacokinetics and pharmacodynamics
than testosterone enanthate.
Eur J Endocrinol.
1995;
132
514-519
28
Tan K CB, Shiu S WM, Kung A WC.
Alterations in hepatic lipase and lipoprotein subfractions with transdermal testosterone
replacement therapy.
Clin Endocrinol.
1999;
51
765-769
29
Haffner S M, Kushwaha R S, Foster D M, Applebaum-Bowden D, Hazzard R W.
Studies on metabolic mechanism of reduced high density lipoprotein during anabolic
steroid therapy.
Metabolism.
1983;
32
413-420
30
Roheim P S, Aszatalos B F.
Clinical significance of lipoprotein size and risk for coronary atherosclerosis.
Clin Chem.
1995;
41/1
147-152
31
Arver S, Dobs A S, Meikle A W, Caramelli K E, Rajaram L, Sanders S W, Mazer N A.
: Long-term efficacy and safety of a permeation-enhanced testosterone transdermal
system in hypogonadal men.
Clin Endocrinol.
1997;
47
727-737
32
Castelli W P, Garrison R J, Wilson P W, Abbott R D, Kalousdian S, Kannel W B.
Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham
Study.
JAMA.
1986;
256
2835-2838
33
Dobs A, Bachorik P, Arver S, Meikle A, Sanders S, Caramelli K, Mazer N.
Interrelationships among lipoprotein levels, sex hormones, anthropometric parameters,
and age in hypogonadal men treated for 1 year with a permeation-enhanced testosterone
transdermal system.
J Clin Endocrinol Metab.
2001;
86
1026-1033
34
Tchernof A, Labrie F, Bélanger A, Prud'homme D, Bouchard C, Tremblay A, Nadeau A,
Després J P.
Relationship between endogenous steroid hormone, sex hormone-binding globulin and
lipoprotein levels in men: contribution of visceral obesity, insulin levels and other
metabolic variables.
Atherosclerosis.
1997;
133
235-244
35
Marin P, Holmäng S, Jansson L, Sjöström L, Kvist H, Holm G, Lindstedt G, Björntorp P.
The effects of testosterone treatment on body composition and metabolism in middle-aged
obese men.
Int J Obes.
1992;
16
991-997
36
Tchernof A, Labrie F, Bélanger A, Després J P.
Obesity and metabolic complications: contribution of dehydroepiandrosterone and other
steroid hormones.
J Endocrinol.
1996;
150
S155-S164
37
Tenover J S.
Effects of testosterone supplementation in the aging male.
J Clin Endocrinol Metab.
1992;
75
1092-1098
Gabriela Berg
Lab. Lípidos y Lipoproteínas · Dto. Bioquímica Clínica, Fac. Farmacia y Bioquímica
· Universidad de Buenos Aires
Junín 956 (C1113AAD) · Buenos Aires · Argentina
Telefon: + 54 (11) 4964-8297
Fax: + 54 (11) 4508-3645
eMail: gaberg@dbc.ffyb.uba.ar