Zusammenfassung
Einleitung: Ziel dieser Studie war, das
Knocheneinwachsverhalten von Kobalt-Chrom-Molybdän-Prüfkörpern
mit und ohne HA-Beschichtung im Vergleich zu Reintitan zu untersuchen.
Material und Methoden: Die verschiedenen
Prüfkörper wurden in Femura von Göttinger Minischweinen
implantiert. Nach 4, 8 und 12 Wochen erfolgte eine makroskopische und
mikroskopische Auswertung der Osseointegration. Ergebnisse: Sowohl histologisch als auch quantitativ zeigte
sich, dass die distal implantierten HA-beschichteten
CoCrMb-Prüfkörper eine deutliche Überlegenheit bezüglich
der Knochenneubildung mit dem ausgeprägtesten Ausmaß an
Osseointegration im Gegensatz zu den anderen getesteten Implantaten aufwiesen.
Die schlechtesten Werte demonstrierte bei jedem Zeitintervall der distal
implantierte unbeschichtete CoCrMb-Prüfkörper. Diskussion: Nach diesem Versuch bleibt festzustellen, dass
die proximalen CoCrMb- und Titan-Prüfkörper eine vergleichbare
Knochenneubildungsrate aufwiesen. Der HA-beschichtete
CoCrMb-Prüfkörper setzte sich nach 8 Wochen deutlich gegenüber
den anderen Prüfkörpern bezüglich der Knochenneubildung ab.
Zusätzlich konnte nachgewiesen werden, dass die Knochenneubildungsrate und
Osseointegration abhängig vom Ort der Implantation war.
Abstract
Introduction: The aim of this study was to
analyse the bone regeneration on porous metallic wire-mesh specimens of pure
titanium, uncoated CoCrMb and HA-coated CoCrMb in a comparative animal
experiment. Material and Methods: Uncoated and
hydroxyapatite-coated CoCrMb (one-sided) specimens were tested in an animal
experiment. The statistical interpretation was done macroscopically as well as
microscopically. Results: With regard to the
histological and quantitative evaluation, it has been shown that the proximal
coated CrCoMb implants were superior to the other specimen. The bone
regeneration with the most distinctive extent of osseointegration has been seen
by the HA-coated CrCoMb specimen. The uncoated distal CoCrMb specimen
demonstrated the worst results. Discussion: This study
shows that specimens of titanium and uncoated CrCoMb implanted at the proximal
metaphysis deliver comparable effects on the bone regeneration and
osseointegration. The best results with regard to the bone regeneration and
osseointegration were seen with the implanted hydroxyadaptite-coated CrCoMb
specimen. In addition, it has been observed that the bone regeneration and
osseointegration of the specimen depends on the place of implantation.
Schlüsselwörter
Beschichtete/unbeschichtete CoCrMb-Prüfkörper - Titanprüfkörper - Knochenneubildungsfaktor
- Göttinger minipigs
Key words
HA-coated/uncoated CoCrMb specimen - Titanium specimen - Bone regeneration factor
- Göttinger minipigs
Literatur
1 Parks J B, Lakes R S. Biomaterials: An Introduction. Plenum, 2d ed New York; 1992:
1-6
2
Wilke A, Hirscheydt S, Orth J, Kienapfel H, Griss P, Franke R P.
Die humane Knochenmarkszellkultur - eine sensitive Methode
zur Beurteilung der Biokompatibilität von Materialien, die in der
Orthopädie verwendet werden.
Z Orthop.
1994;
132
1-7
3
Yang C Y, Wang B C, Chang W J, Chang E.
Mechanical and histological evaluations of cobalt-chromium
alloy and hydroxyapatite plasma sprayed coatings in bone.
Journal of Materials, Science Materials in Medicine.
1996;
5
167-174
4 Orth J, Macedo S, Wilke A, Griss P. Osseointegration of hydroxyapatite-coated and
uncoated bulk
aluminia implants in the femur of Göttinger Minipigs. In: A. Ravaglioli, A.
Krajewski (Eds)
Mechanical testing of bonding strength Bioceramics and the
human body. Elsevier Science Publishers B.V., London; 1991: 303-305
5
Wilke A, Orth J, Kraft M, Griss P.
Bone ingrowth behavior of hydroxyapatite-coated,
polyethylene-intruded and uncoated, sandblated pure titanium implants in an
infected implantation site: an experimental study in miniature pigs.
Journal of Materials, Science Materials in Medicine.
1993;
4
260-265
6
Herrmann H.
Advances in thermal-spray technology.
Advanced Materials and Processes.
1990;
137 (4)
41-45
7
D’Angelo C, EIJoundi H.
Reliable coatings via plasma are spraying.
J Advanced Materials and Process.
1988;
134 (6)
41-44
8 Donath K. Die Trenn-Dünnschliff-Technik. Exakt-/Kulzer-Druckschrift Norderstedt;
1989
9 Romeis B. Mikroskopische Technik . In: P Bock (Hrsg) Urban und Schwarzenberg, 17.
Auflage München, Wien, Baltimore; 1989
10
Kienapfel H, Sumner D R, Turner T M, Urban R M, Galante J O.
Efficacy of autograft and freeze-dried allograft to enhance
fixation of porous coated implants in the presence of interface gaps.
J Orthop Res.
1992;
10 (3)
423-433
11
Cook S D, Thomas K A, Kay J F, Jarcho M.
Hydroxyapatite-coated titanium for orthopedic implant
applications.
Clin Orthop.
1988;
232
225-243
12 Stein T, Armand C, Bobyn J D. Quantitative histological comparison of bone growth
into
titanium and cobalbt-chronium porous coated canine implants. 16th Annula Meeting
of the Society for
Biomaterials, Charlestone, South Carolina ; 1990: 253
13
Luckey H A, Lamprecht E G, Walt M J.
Bone appositon to plasma sprayed cobalt-chromium-alloy.
J Biomed Mater Res.
1992;
26
557-575
14
Wang B C, Chang E, Yang C Y, Tu D.
The shear strength and the failure mode of plasma sprayed
hydroxyapatit coatings to bone: the effect of coating thickness.
J Biomed Mater Res.
1993;
394
1315-1327
15
Hayashi K, Uenoyama N, Matsuguchi N, Sugioka Y.
Quantitative analysis of in vivo tissue responses to
titanium-oxide and hydroxyapatite coated titanium alloy.
J Biomed Mater Res.
1991;
25
515-523
16
Hayashi K, Mashima T, Uenoyaina K.
The effect of hydroxyapatite coating on bony ingrowth into
grooved titanium implants.
Biomaterials,.
1999;
2
111-119
17
Gruber G, Pesch H J, Alpen A.
Welchen Einfluss hat der Implantationsort auf die ossäre
Integration eines Titan-Prüfzylinders im proximalen Schaffemur.
Z Orthop.
1998;
344 (Supplement)
18 Shetty H R. Zimmer fiber metal bonded titanium Ti-6Al-4V alloy and
zimaloy cobalt-chromium-molybdenum alloy products versus competitive beaded
and
plasma spray-coated products USA. Zimmer Technical Paper 1995
19
Wrona M, Mayor M B, Collier J P.
The correlation between fusion defects and damage in tibial
polyethylene bearings.
Clin Orthop.
1994;
1
92-103
20
Wright T M, Rinac C M, Stulberg S D, Mintz L, Tsao A K, Klein R W, McCrae C.
Wear of polyethylene in total joint replacements. Observation
of retrieved PCA knee implants.
Clin Orthop.
1992;
2
276-281
21
Tisdel C L, Goldberg V M, Bensusan S D, Staikoff L S, Stevenson S.
The influence of a hydroxyapatite and tricalcium-phosphate
coating on bone growth into titanium fiber-metal implants.
J Bone Joint Surg Am.
1994;
76 (2)
159-171
22
Thomas K A, Cook S D, Haddad R J, Kay J F, Jarcho M.
Biologie response to hydroxylapatite-coated titanium hips. A
preliminary study in dogs.
J Arthroplasty.
1989;
4 (1)
43-53
23
Thomas K A, Cook S D.
An evaluation of variables influencing implant fixation by
direct bone apposition.
J Biomed Mater Res.
1985;
19 (8)
875-901
24
Thomas K A, Kay J F, Cook S D, Jarcho M.
The effect of surface macrotexture and hydroxylapatite
coating on the mechanical strengths and histologic profiles of titanium implant
materials.
J Biomed Mater Res.
1987;
21 (12)
1395-414
25
Wennerberg A, Albrektsson T, Andersson B, Krol J J.
A histomorphometric and removal torque study of screw-shaped
titanium implants with three different surface topographies.
Clin Oral Implants Res.
1995;
6 (1)
24-30
26
Wennerberg A, Ohlsson R, Rosen B G, Andersson B.
Characterizing three-dimensional topography of engineering
and biomaterial surfaces by confocal laser scanning and stylus techniques.
Med Eng Phys.
1996;
18 (7)
548-556
27
Vercaigne S, Wolke J G, Naert L, Jansen J A.
Histomorphometrical and mechanical evaluation of titanium
plasma-spray-coated implants placed in the cortical bone of goats.
J Biomed Mater Res.
1998;
41 (1)
41-48
PD Dr. med. dipl. rer. physiol. Axel Wilke
Orthopädische Klinik der Philipps Universität
Marburg
Baldingerstrasse
35037 Marburg
Phone: 06421/286-4900
Fax: 06421/286-7007
Email: Wilke@post.med.uni-marburg.de