Abstract
Enantiomerically pure (S)-5,6,7,8-tetrahydroquinolin-8-ol [(S)-1] and (R)-8-acetoxy-5,6,7,8-tetrahydroquinoline [(R)-2] have been prepared by the lipase-catalyzed kinetic acetylation of racemic 5,6,7,8-tetrahydroquinolin-8-ol
[(±)-1] in excellent chemical yields. The mesylation of (R)-1 followed by a substitution reaction with the azide, thioacetate, and dimethyl malonate
anions and benzylamine gives the corresponding substituted products in an enantiomerically
pure form with an inversion of the configuration in good yields. The methanolysis
of (S)-5,6,7,8-tetrahydroquinolin-8-yl acetate in the presence of potassium carbonate and
alkylation of the resulting thiol anion with alkyl halides in a one-pot reaction gives
the 5,6,7,8-tetrahydroquinolin-8-yl thioether.
Key words
8-substituted quinolines - enzymatic acetylation - nucleophiles - stereospecific substitutions
- asymmetric synthesis
References
<A NAME="RF09201SS-1">1</A>
Comprehensive Heterocyclic Chemistry
Vol. 2:
Boulton AJ.
Mckillop A.
Pergamon;
Oxford:
1984.
<A NAME="RF09201SS-2A">2a</A>
Kees KL.
Smith TM.
McCaleb ML.
Prozialeck DH.
Cheeseman RS.
Christos TE.
Patt WC.
Steiner KE.
J. Med. Chem.
1992,
35:
944
<A NAME="RF09201SS-2B">2b</A>
Beattie DE.
Crossley R.
Curran ACW.
Hill DG.
Lawrence AE.
J. Med. Chem.
1977,
20:
718
<A NAME="RF09201SS-3A">3a</A>
Ghera E.
David YB.
Rapoport H.
J. Org. Chem.
1981,
46:
2059
<A NAME="RF09201SS-3B">3b</A>
Uchida M.
Morita S.
Chihiro M.
Kanbe T.
Yamasaki K.
Yabuuchi Y.
Nakagawa K.
Chem. Pharm. Bull.
1989,
37:
1517
<A NAME="RF09201SS-3C">3c</A>
Yamada S.
Goto T.
Yamaguchi T.
Aihara K.
Kogi K.
Narita S.
Chem. Pharm. Bull.
1995,
43:
421
<A NAME="RF09201SS-4A">4a</A>
Zymalkowski F.
Kothari M.
Arch. Pharm. (Weinheim. Ger.)
1970,
303:
667
<A NAME="RF09201SS-4B">4b</A>
Beattie DE.
Crossley R.
Curran ACW.
Dixon GT.
Hill DG.
Lawrence AE.
Shepherd RG.
J. Med. Chem.
1977,
20:
714
<A NAME="RF09201SS-4C">4c</A>
Dammertz W.
Reimann E.
Arch. Pharm. (Weinheim, Ger.)
1980,
313:
826
<A NAME="RF09201SS-4D">4d</A>
Calhoun W.
Carlson RP.
Crossley R.
Datko LJ.
Dietrich S.
Heatherington K.
Marshall LA.
Meade PJ.
Opalko A.
Shepherd RG.
J. Med. Chem.
1995,
38:
1473
From cyclohexanone oxime:
<A NAME="RF09201SS-5A">5a</A>
Irie H.
Katayama I.
Mizuno Y.
Koyama J.
Suzuta Y.
Heterocycles
1979,
12:
771
<A NAME="RF09201SS-5B">5b</A>
Koyama J.
Sugita T.
Suzuta Y.
Irie H.
Chem. Pharm. Bull.
1983,
31:
2601
<A NAME="RF09201SS-5C">5c</A>
Hosokawa T.
Shimo N.
Maeda K.
Sonoda A.
Murahashi S.
Tetrahedron Lett.
1976,
383
<A NAME="RF09201SS-5D">5d</A>
Tsutsui H.
Narasaka K.
Chem. Lett.
2001,
526
By condensation:
<A NAME="RF09201SS-6A">6a</A>
Prelog V.
Szpilfogel S.
Helv. Chim. Acta
1945,
28:
1684
<A NAME="RF09201SS-6B">6b</A>
Thummel RP.
Kohli DK.
J. Org. Chem.
1977,
42:
2742
<A NAME="RF09201SS-6C">6c</A>
Chelucci G.
Gladiali S.
Marchetti M.
J. Heterocycl. Chem.
1988,
25:
1761
<A NAME="RF09201SS-7A">7a</A>
Okatani T.
Koyama J.
Tagahara K.
Heterocycles
1989,
29:
1809
<A NAME="RF09201SS-7B">7b</A>
Ohta K.
Iwaoka J.
Kamijyo Y.
Okada M.
Nomura Y.
Nippon Kagaku Kaishi
1989,
1593 ; Chem. Abstr.
1990, 112, 158018
<A NAME="RF09201SS-8A">8a</A>
Okazaki H.
Onishi K.
Soeda M.
Ikefuji Y.
Tamura R.
Mochida I.
Bull. Chem. Soc. Jpn.
1990,
63:
3167
<A NAME="RF09201SS-8B">8b</A>
Fish RH.
Thormodsen AD.
Cremer GA.
J. Am. Chem. Soc.
1982,
104:
5234
<A NAME="RF09201SS-8C">8c</A>
Vierhapper FW.
Eliel EL.
J. Org. Chem.
1975,
40:
2729
<A NAME="RF09201SS-9A">9a</A>
Curran ACW.
Shepherd RG.
J. Chem. Soc., Perkin Trans. 1
1976,
983
<A NAME="RF09201SS-9B">9b</A>
Yamada S.
Goto T.
Shimanuki E.
Narita S.
Chem. Pharm. Bull.
1994,
42:
718
<A NAME="RF09201SS-10">10</A>
Sucheck SJ.
Greenberg WA.
Tolbert TJ.
Wong C.-H.
Angew. Chem., Int. Ed.
2000,
39:
1080
<A NAME="RF09201SS-11A">11a</A>
Uenishi J.
Hiraoka T.
Hata S.
Nishiwaki K.
Yonemitsu O.
Nakamura K.
Tsukube H.
J. Org. Chem.
1998,
63:
2481
<A NAME="RF09201SS-11B">11b</A>
Uenishi J.
Nishiwaki K.
Hata S.
Nakamura K.
Tetrahedron Lett.
1994,
35:
7973
<A NAME="RF09201SS-12">12</A> The racemic 1 was prepared by the reduction of 5,6,7,8-tetrahydroquinolin-8-one with NaBH4 quantitatively. For the synthesis of 5,6,7,8-tetrahydroquinolin-8-one, see:
Thummel RP.
Lefoulon F.
Cantu D.
Mahadevan R.
J. Org. Chem.
1984,
49:
2208
<A NAME="RF09201SS-13">13</A>
The details including the columns and conditions are described in the experimental
section.
<A NAME="RF09201SS-14">14</A>
(R)-Alcohol was specifically acetylated under the conditions, and no exception has ever
been observed so far at least using Candida antarctica lipase.
<A NAME="RF09201SS-15A">15a</A>
Rotticci D.
Haeffner F.
Orenium C.
Norin T.
Hult K.
J. Mol. Catal. B: Enzym.
1998,
5:
267
<A NAME="RF09201SS-15B">15b</A>
Kazlauskas RJ.
Weissfloch ANE.
Rappaport AT.
Cuccia LA.
J. Org. Chem.
1991,
56:
2656
<A NAME="RF09201SS-16A">16a</A>
Uenishi J.
Hamada M.
Takagi T.
Yonemitsu O.
Heterocycles
2001,
54:
735
<A NAME="RF09201SS-16B">16b</A>
Uenishi J.
Hiraoka T.
Yuyama K.
Yonemitsu O.
Heterocycles
2000,
52:
719
<A NAME="RF09201SS-16C">16c</A>
Uenishi J.
Takagi T.
Ueno T.
Hiraoka T.
Yonemitsu O.
Tsukube H.
Synlett
1999,
41
<A NAME="RF09201SS-17">17</A> Racemic 2 has been reported, see:
Zymalkowski F.
Rimek H.
Arch. Pharm. (Weinheim, Ger.)
1961,
294:
759
<A NAME="RF09201SS-18">18</A> Racemic 1 has been reported, see:
Fontenas C.
Bejan E.
Aït Haddou H.
Balavoine GGA.
Synth. Commun.
1995,
25:
629
<A NAME="RF09201SS-19">19</A> Racemic 4 has been reported, see:
Jacobs C.
Frotcher M.
Dannhardt G.
Hartmann RW.
J. Med. Chem.
2000,
43:
1841