Zusammenfassung:
Das morphologische Merkmal der Kontrastmittelanreicherung im Magnet-Resonanz-Tomogramm
(MRT) bei Glioblastomen ist unspezifisch und metabolische Untersuchungen können bei
der Differenzierung von tumorösen und nicht tumorösen Anreicherungsphänomenen hilfreich
sein. Infolge lokaler Therapieverfahren treten sekundäre Gewebsveränderungen auf und
insbesondere nach intratumoraler Immun- und Gentherapiebehandlung wurden unspezifische,
nicht tumoröse Anreicherungsphänomene beschrieben. Die Magnet-Resonanz-Spektroskopie
(MRS) gibt Aufschluß über den Gehalt bestimmter Stoffwechselprodukte in einem verdächtigen
Gewebe und hilft so bei der Abgrenzung von tumoröser versus nicht tumoröser Kontrastanreicherung.
Wir zeigen die Ergebnisse von zwei Glioblastom-Patienten mit parallelen Verlaufsuntersuchungen
durch MRT und MRS nach Resektion, Bestrahlung, intratumoraler Immuntherapie mit Interleukin-4-Toxin
und laufender Chemotherapie.
In MRT zeigte sich bei beiden Patienten eine ausgedehnte und zunehmende Kontrastanreicherung
mit hochgradigem Verdacht auf ein rasch progredientes Lokalrezidiv. In den gleichzeitig
durchgeführten MRS-Untersuchungen fand sich dagegen keine Erhöhung der Cholinkonzentration,
so daß das Vorliegen vitalen Tumorgewebes in den anreichernden Arealen wenig wahrscheinlich
war. Die laufende Chemotherapie wurde fortgesetzt und in den weiteren Kontrolluntersuchungen
verschwanden die Kontrastanreicherungen nahezu vollständig. Bei vorbehandelten Glioblastomen
kann die MR-Spektroskopie zur Unterscheidung von tumorösen und nicht tumorösen Anreicherungsphänomenen
nach lokaler Immuntoxinbehandlung beitragen und die weitere Behandlungsplanung unterstützen.
Summary
The morphologic pattern of contrast enhancement in magnetic resonance imaging (MRI)
of glioblastoma patients could be non specific and metabolic investigations can be
useful for the differenciation of tumorous and non tumorous enhancement. Following
initial therapy secondary tissue changes can occur and non specific non tumorous enhancement
phenomena have been observed after local immuno- and gene therapy strategies. Magnetic
resonance spectroscopic imaging (MRSI) has the potential to give more specific information
on the metabolism of the suspective tissue and to differentiate enhancing phenomena.
We demonstrate two cases of patients suffering from a glioblastoma with simultaneous
MRI and MRSI follow-up after multimodal treatment with surgery, radiation, intralesional
immunotherapy (IL-4 toxin) and ongoing chemotherapy.
MRI demonstrated extensive and increasing enhancement. This was highly suspicious
of rapid progressive local tumor recurrency in both patients. Simultaneously obtained
MRSI did not show the expected result of extensive and increasing choline concentration
within these enhancing areas. This indicated that the enhancement did most likely
not reflect vital tumor tissue. Chemotherapy treatment was continued and further MRI
follow up revealed nearly complete regression of all enhancement.
In pretreated glioblastoma metabolic data of MRSI seem to be potentially helpful to
differentiate tumorous and non tumorous enhancement phenomena after local immunotherapy,
which might be useful for further treatment decisions.
Schlüsselwörter
Kontrastanreicherung - Glioblastom - Immuntherapie - Interleukin-4-Toxin - MR-Spektroskopie
Key words:
Enhancement - Glioblastoma - Immunotherapy - Interleucin-4-toxin - MR-Spectroscopy
References
1
Albert F K, Forsting M, Sartor K, Adams H P, Kunze S.
Early postoperative magnetic resonance imaging after resection of malignant glioma:
Objective evaluation of residual tumor and its influence on regrowth and prognosis.
Neurosurgery.
1994;
34
45-61
2
Bottomley P A.
Spatial localization in NMR spectroscopy in vivo.
Ann NY Acad Sci.
1987;
508
333-348
3
Barker F G, Chang S M, Valk P E, Pound T R, Prados M D.
18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant
glioma.
Cancer.
1997;
79
115-126
4
Davis W K, Boyko O B, Hoffman J M, Hanson M W, Schold S C, Burger P C, Friedman A H,
Coleman R E.
[18 F]2-fluoro-2-deoxyglucose-positron emission tomography correlation of gadolinium-enhanced
MR imaging of central nervous system neoplasia.
AJNR.
1993;
14
515-523
5
Deliganis A V, Baxter A B, Berger M S, Marcus S G, Maravilla K R.
Serial MR in gene therapy for recurrent glioblastoma: initial experience and work
in progress.
AJNR.
1997;
18
1401-1406
6
Duyn J H, Gillen J, Sobering G, van Zijl P C, Moonen C T.
Multisection proton MR spectroscopic imaging of the brain.
Radiology.
1993;
188
277-282
7
Fulham M J, Bizzi A, Dietz M J, Shih H H, Raman R, Sobering G S, Frank J A, Dwyer A J,
Alger J R, Di Chiro G.
Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical
relevance.
Radiology.
1992;
185
675-686
8 Fulham M J, Di Chiro G. Neurologic PET and SPECT. in Harbert T, Eckelman W, Neumann
R, Eds.: Textbook of Nuclear Medicine Basel: Thieme 1996: 361-385
9
Herholz K, Pietrzyk U, Voges J, Schroder R, Halber M, Treuer H, Sturm V, Heiss W D.
Correlation of glucose consumption and tumor cell density in astrocytomas. A stereotactic
PET study.
J Neurosurg.
1993;
79
853-858
10
Kaibara T, Tyson R L, Sutherland G R.
Human cerebral neoplasms studied using MR spectroscopy: a review.
Biochem Cell Biol.
1998;
76
477-486
11
Kim C0 K, Alavi J B, Alavi A, Reivich M.
New grading system of cerebral gliomas using positron emission tomography with F-18
fluorodeoxyglucose.
J Neurooncol.
1991;
10
85-91
12
Kinoshita Y, Kajiwara H, Yokota A, Koga Y.
Proton magnetic resonance spectroscopy of brain tumors: an in vitro study.
Neurosurgery.
1994;
35
((4))
606-613
13
Levivier M, Goldman S, Pirotte B, Brucher J M, Baleriaux D, Luxen A, Hildebrand J,
Brotchi J.
Diagnostic yield of stereotactic brain biopsy guided by positron emission tomography
with [18 F]fluorodeoxyglucose.
J Neurosurg.
1995;
82
445-452
14
Luyten P R, Marien A JH, Heindel W, van Gerwen P H, Herholz K, den Hollander J A,
Friedmann G, Heiss W D.
Metabolic imaging of patients with intracranial tumors: 1 H MR spectroscopic imaging and PET.
Radiology.
1990;
176
791-799
15
Michaelis T, Merboldt K D, Bruhn H, Hanicke W, Frahm J.
Absolute concentrations of metabolites in the adult human brain in vivo: quantification
of localized proton MR spectra.
Radiology.
1993;
187
219-227
16
Negendank W G, Sauter R, Brown T R, Evelhoch J L, Falini A, Gotsis E D, Heerschap A,
Kamada K, Lee B CP, Mengeot M M, Moser E, Padavic-Shaller K A, Sanders J A, Spraggins T A,
Stillman A E, Terwey B, Vogl T J, Wicklow K, Zimmerman R A.
Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter
study.
J Neurosurg.
1996;
84
449-458
17
Ott D, Hennig J, Ernst T.
Human brain tumors: assessment with in vivo proton MR spectroscopy.
Radiology.
1993;
186
745-752
18
Poptani H, Gupta R K, Roy R, Pandey R, Jain V K, Chhabra D K.
Characterization of intracranial mass lesions with in vivo proton MR spectroscopy.
AJNR.
1995;
16
1593-1603
19
Preul M C, Caramanos Z, Villemure J G, Shenouda G, LeBlanc R, Langleben A, Arnold D L.
Using proton magnetic resonance spectroscopic imaging to predict in vivo the response
of recurrent malignant gliomas to tamoxifen chemotherapy.
Neurosurgery.
2000;
46
((2))
306-318
20
Preul M C, Leblanc R, Caramanos Z, Kasrai R, Narayanan S, Arnold D L.
Magnetic resonance spectroscopy guided brain tumor resection: differentiation between
recurrent glioma and radiation change in two diagnostically difficult cases.
Can J Neurol Sci.
1998;
25
13-22
21
Preul M C, Caramanos Z, Collins D L, Villemure J G, Leblanc R, Olivier A, Pokrupa R,
Arnold D L.
Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance
spectroscopy.
Nature Med.
1996;
2
323-325
22
Ram Z, Culver K W, Oshiro E M, Viola J J, De Vroom H L, Otto E, Long Z, Chiang Y,
McGarrity G J, Muul L M, Katz D, Blaese R M, Oldfield E H.
Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing
cells.
Nature Medicine.
1997;
3
1354-1361
23
Ramesh R, Marrogi A J, Freeman S M.
Tumor killing using the HSV-tk suicide gene.
Gene Ther Mol Biol.
1998;
1
253-263
24
Schifter T, Hoffman J M, Hanson M W, Boyko O B, Beam C, Paine S, Schold S C, Burger P C,
Coleman R E.
Serial FDG-PET studies in the prediction of survival in patients with primary brain
tumors.
J Comput Assist Tomogr.
1993;
17
509-516
25
Segebarth C M, Balériaux D F, Luyten P R, den Hollander J A.
Detection of metabolic heterogeneity of human intracranial tumors in vivo by 1 H NMR spectroscopic imaging.
Magn Reson Med.
1990;
13
62-76
26
Shand N, Weber F, Mariani L, Bernstein M, Gianella-Borradori A, Long Z, Sorensen A G,
Barbier N.
A phase 1-2 clinical trial of gene therapy for recurrent glioblastoma multiforme by
tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir.
Hum Gene Ther.
1999;
10
2325-2335
27
Shimizu H, Kumabe T, Tominaga T, Kayama T, Hara K, Ono Y, Sato K, Arai N, Fujiwara S,
Yoshimoto T.
Noninvasive evaluation of malignancy of brain tumors with proton MR spectroscopy.
AJNR.
1996;
17
737-747
28
Smith M M, Thompson J E, Castillo M, Cush S, Mukherji S K, Miller C H, Quattrocchi K B.
MR of recurrent high-grade astrocytomas after intralesional immunotherapy.
AJNR.
1996;
17
1065-1071
29
Tedeschi G, Lundbom N, Raman R, Bonavita S, Duyn J H, Alger J R, Di Chiro G.
Increased choline signal coinciding with malignant degeneration of cerebral gliomas:
a serial proton magnetic resonance spectroscopy imaging study.
J Neurosurg.
1997;
87
516-524
30
Usenius J PR, Kauppinen R A, Vainio P A, Hernesniemi J A, Vapalaht M P, Paljawi L A,
Soimakallio S.
Quantitative metabolite patterns of human brain tumors: detection by 1 H NMR spectroscopy in vivo and in vitro.
J Comput Assist Tomogr.
1994;
18
705-713
31
Zimmerman R A.
Imaging of adult central nervous system primary malignant gliomas. Staging and follow
up.
Cancer.
1991;
67
1278-1283
Dr. Frank W. Floeth
Neurochirurgische Klinik der Heinrich-Heine-Universität Düsseldorf
Moorenstraße 5
40225 Düsseldorf
Telefon: + 49-211-811-7921
Fax: + 49-211-811-7928
eMail: floethf@uni-duesseldorf.de