Zusammenfassung
Zielsetzung: Vergleich von steady state free precession (SSFP) und Gradienten-Echo (GE) 3D-Navigator-Sequenzen
zur Darstellung der Koronararterien. Material und Methode: 8 Probanden und 12 Patienten wurden an einem 1,5 T-System (Magnetom Sonata, Siemens
AG, Erlangen) kernspintomographisch untersucht. Die Darstellung des Koronarsystems
erfolgte jeweils mit einer 3D-Navigator-GE- (TR 5,8 ms, TE 2,2 ms, FL 25 °) und einer
3D-Navigator-SSFP-Sequenz (TR 3,9 ms, TE 1,7 ms, FL 65 °) in identischer Schichtposition.
Die Auflösung in der Bildebene betrug 0,9 × 0,7 mm2 . Aus Signalintensitätsmessungen im Gefäßlumen; im Myokard und im epikardialen Fettgewebe
wurden die Kontrast-Rausch-Verhältnisse (KRV) berechnet. Ergebnisse: Die SSFP-Technik (147 ± 36) zeigt im Vergleich zur GE-Sequenz (103 ± 36) eine signifikant
höhere Signalintensität im Gefäßlumen; Fettgewebe und Myokard zeigten keine signifikanten
Unterschiede. Trotz des höheren Bildrauschens der SSFP-Sequenz (9,3 ± 1,4) im Vergleich
zur GE-Technik (5,3 ± 0,9) ist das KVR zum Myokard (7,8 ± 3,7 gegenüber 3,4 ± 3,3)
bei SSFP um den Faktor 2 größer, während das KRV zum Fettgewebe keine signifikanten
Unterschiede zwischen den Sequenzen zeigte (12 ± 5 versus 13 ± 4). Schlussfolgerungen: Durch die höhere Signalintensität im Gefäß, den besseren Kontrast zum Myokard und
die schnellere Datenakquisition ist die SSFP-Technik eine interessante Alternative
zu GE-Sequenzen bei der MR-Koronarangiographie.
Abstract
Aim: Purpose of our study was to compare the image quality of 3D-navigator steady state
free precession (SSFP) and gradient echo (GE) sequences for magnetic resonance coronary
angiography (MRCA) in volunteers and patients. Methods: Following informed consent 8 volunteers and 12 patients were included into this study.
In all subjects a 3D navigator MRCA of the right and the left coronary artery was
performed with a SSFP (TR 3.9 ms, TE 1.7 ms, FA 65 °, bandwidth 540 Hz) and a GE (TR
5.8 ms, TE 2.2 ms, FA 25 °, bandwidth 200 Hz) sequence using a 1.5 T-MR-System (Magnetom
Sonata, Siemens Erlangen). The slice thickness was 1.5 mm and the in-plane resolution
was 0.9 × 0.7 mm2 for all measurements. Results: The blood pool showed a significantly (p < 0.01) higher signal intensity on SSFP
images (147 ± 36) compared to GE images (103 ± 36). Although noise increased with
SSFP (9.3 ± 1.4 versus 5.3 ± 0.9), the contrast-to-noise ratio between myocardium
and the coronaries was significantly (p < 0.01) higher on SSFP images (7.8 ± 3.7 versus
3.4 ± 3.3). The CNR between the coronaries and the epicardial fat showed no significant
differences (12 ± 5 versus 13 ± 4). Conclusion: The 3D-navigator SSFP sequence is a promising new technique for MRCA which improves
the contrast between the coronaries and the myocardium and shortens the data acquisition
compared to gradient-echo imaging.
Schlüsselwörter
Magnetresonanz-Tomographie - Magnetresonanz-Angiographie - Koronararterien - Schnelle
Bildgebung
Key words
Magnetic resonance imaging - Magnetic resonance angiography - Coronary Arteries -
Fast imaging
Literatur
1
Tuomilehto J, Kuulasmaa K, Torppa J.
WHO MONICA Project: geographic variation in mortality from cardiovascular diseases.
Baseline data on selected population characteristics and cardiovascular mortality.
World Health Stat Q.
1987;
40
171-184
2
Enbergs A, Burger R, Reinecke H, Borggrefe M, Breithardt G, Kerber S.
Prevalence of coronary artery disease in a general population without suspicion of
coronary artery disease: angiographic of subjects aged 40 to 70 years referred for
catheter ablation therapy.
Eur Heart J.
2000;
21
45-52
3
Lee T H, Boucher C A.
Clinical practice. Noninvasive tests in patients with stable coronary artery disease.
N Engl J Med.
2001;
344
1840-1845
4 Bruckenberger E.
Herzbericht 2000 mit Transplantationschirurgie, 13. Bericht des Krankenhausausschusses
der AOLG. Hannover; 2001
5 Davidson C.
Cardiac catheterization. In: Braunwald E (ed) Heart Disease. 5 ed. Philadelphia; WB Saunders 1992: 177-203
6
Achenbach S, Giesler T, Ropers D, Ulzheimer S, Derlien H, Schulte C, Wenkel E, Moshage W,
Bautz W, Daniel W G, Kalender W A, Baum U.
Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated,
multislice spiral computed tomography.
Circulation.
2001;
103
2535-2538
7
Moshage W, Ropers D, Daniel W G, Achenbach S.
Nichtinvasive Darstellung von Koronararterien mittels Elektronenstrahltomographie
(EBCT).
Z Kardiol.
2000;
89
15-20
8
Cohnen M, Poll L, Puttmann C, Ewen K, Modder U.
Strahlenexposition bei der Mehrschicht-Spiral-CT des Herzens.
Fortschr Röntgenstr.
2001;
173
295-299
9
Debatin J F, Hany T F.
MR-based assessment of vascular morphology and function.
Eur Radiol.
1998;
8
528-539
10
Goyen M, Ruehm S G, Debatin J F.
MR-angiography: the role of contrast agents.
Eur J Radiol.
2000;
34
247-256
11
Ho V B, Prince M R, Dong Q.
Magnetic resonance imaging of the aorta and branch vessels.
Coron Artery Dis.
1999;
10
141-149
12
Grist T M.
MRA of the abdominal aorta and lower extremities.
J Magn Reson Imaging.
2000;
11
32-43
13
Achenbach S, Ropers D, Regenfus M, Pohle K, Giesler T, Moshage W, Daniel W G.
Noninvasive coronary angiography by magnetic resonance imaging, electron-beam computed
tomography, and multislice computed tomography.
Am J Cardiol.
2001;
88
70 E-73 E
14
Barkhausen J, Ruehm S G, Goyen M, Buck T, Laub G, Debatin J F.
MR evaluation of ventricular function: true fast imaging with steady-state precession
versus fast low-angle shot cine MR imaging: feasibility study.
Radiology.
2001;
219
264-269
15
Achenbach S, Ropers D, Holle J, Muschiol G, Daniel W G, Moshage W.
In-plane coronary arterial motion velocity: measurement with electron-beam CT.
Radiology.
2000;
216
457-463
16
Hofman W B, Wickline S A, Lorenz C H.
Quantification of in-plane motion of the coronary arteries during the cardiac cycle:
implications for acquisition window duration for MR flow quantification.
J Magn Reson Imaging.
1998;
8
568-576
17
Wang Y, Vidan E, Bergman G W.
Cardiac motion of coronary arteries: variability in the rest period and implications
for coronary MR angiography.
Radiology.
1999;
213
751-758
18
Deshpande V S, Shea S M, Laub G, Simonetti O P, Finn J P, Li D.
3D magnetization-prepared true-FISP: a new technique for imaging coronary arteries.
Magn Reson Med.
2001;
46
494-502
19
Stuber M, Botnar R M, Danias P G, McConnell M V, Kissinger K V, Yucel E K, Manning W J.
Contrast agent-enhanced, free-breathing, three-dimensional coronary magnetic resonance
angiography.
J Magn Reson Imaging.
1999;
10
790-799
20
Wielopolski P A, van Geuns R J, de Feyter P J, Oudkerk M.
Coronary arteries.
Eur Radiol.
2000;
10
12-35
21
Li D, Zheng J, Bae K T, Woodard P K, Haacke E M.
Contrast-enhanced magnetic resonance imaging of the coronary arteries. A review.
Invest Radiol.
1998;
33
578-586
22
Li D, Zheng J, Weinmann H J.
Contrast-enhanced MR imaging of coronary arteries: comparison of intra- and extravascular
contrast agents in swine.
Radiology.
2001;
218
670-678
23
Manning W J, Li W, Edelman R R.
A preliminary report comparing magnetic resonance coronary angiography with conventional
angiography.
N Engl J Med.
1993;
328
828-832
24
Kim W Y, Danias P G, Stuber M, Flamm S D, Plein S, Nagel E, Langerak S E, Weber O M,
Pedersen E M, Schmidt M, Botnar R M, Manning W J.
Coronary Magnetic Resonance Angiography for the Detection of Coronary Stenoses.
N Engl J Med.
2001;
345
1863-1869
25
Achenbach S, Daniel W G.
Noninvasive Coronary Angiography - An Acceptable Alternative?.
N Engl J Med.
2001;
345
1909-1910
Dr. Jörg Barkhausen
Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Essen
Hufelandstraße 55
45122 Essen
Phone: + 49-201-7231522
Fax: + 49-201-7235682
Email: joerg.barkhausen@uni-essen.de