 
         
         
         Zusammenfassung
         
         
            Einleitung: Entzündliche Erkrankungen 
            			 sind die häufigsten Erkrankungen und damit auch wesentlich bei den 
            			 häufigsten Todesursachen beteiligt. Im HNO-Bereich stellen neben den 
            			 viralen bakteriellen Entzündungen vor allem die eosinophilen 
            			 Entzündungen der Atemwege ein Problem dar. Sie sind das wesentliche 
            			 pathologische Substrat bei der allergischen Rhinitis, dem Asthma bronchiale, 
            			 der Polyposis nasi, der chronischen Sinusitis und bei einer großen Zahl 
            			 ungeklärter Rhinitiden wie der nichtallergischen eosinophilen Rhinitis. In 
            			 der vorliegenden Übersicht werden die Grundlagen der eosinophilen 
            			 Entzündung beschrieben.
         
         
         
            Methoden und Ergebnisse: Die Zellen reifen im 
            			 Knochenmark unter dem Einfluss von IL-5 und Eotaxin heran, werden durch deren
            
            			 Zytokinbefehle mobilisiert und mittels Adhäsion spezifisch ins Gewebe 
            			 geschleust. Die Adhäsion findet unter dem Einfluss von VCAM-1 und anderen 
            			 statt. Im Gewebe werden sie dann durch verschiedene Stimuli wie 
            			 Immunglobulinrezeptoren und IL-5 aktiviert, setzen Mediatoren und Zytokine frei
            
            			 und bewirken weitere entzündliche Veränderungen. Die Folgen der 
            			 Aktivierung mit ihren multiplen Mediatoren sind dann die klinischen Symptome im
            
            			 Organ und hier ist es vor allem die Spätphase der Typ-1-Reaktion und die 
            			 weiter gehende entzündliche Infiltration. Die klinische Relevanz steigt 
            			 noch durch die Interaktionen mit Viren und die Effekte auf muskarinerge 
            			 Synapsen. Diagnostisch lässt sich die eosinophile Entzündung lokal 
            			 mit der Messung von kationischen Proteinen durchführen.
         
         
         
            Zusammenfassung: Somit sind auch die heutigen 
            			 und zukünftige therapeutischen Ansätze von besonderer Relevanz. Die 
            			 gängige Therapie besteht in der lokalen und auch systemischen Steroidgabe, 
            			 positive Effekte lassen sich auch mit Antikörpern gegen Interleukin 5 und 
            			 4 erzielen, auch Anti-IgE scheint eine Wirkung zu zeigen.
         
         
         
         Abstract
         
         
            Introduction: Inflammatory diseases are very 
            			 frequent and cause reasonable mortality. They are the major part in upper 
            			 airway diseases in ENT. Eosinophil inflammation is a key feature in allergic 
            			 rhinitis, asthma, nasal polyps and non-allergic rhinitis. The mechanism and the
            
            			 consequences of eosinophil inflammation are described in this review.
         
         
         
            Methods and Results: Eosinophils mature in 
            			 bone marrow, mainly under the influence of IL-5 and eotaxin. Once mobilised to
            
            			 circulation, they accumulate in inflammatory sites by specific adhesion. VCAM-1
            
            			 and other adhesion molecules are involved in this process. In the tissue, 
            			 eosinophils get activated by different stimuli like immunoglobulin receptors 
            			 and cytokines like IL-5. Activated eosinophils release toxic proteins, 
            			 mediators and cytokines and thus trigger further inflammatory response. This 
            			 leads to the late phase reaction and continuing inflammatory reaction. 
            			 Eosinophils also interact with virus infections and have effects on nerve 
            			 endings with the M2 receptor.
         
         
         
            Conclusions: Eosinophil inflammation may be 
            			 monitored via the determination of cationic proteins in nasal secretions. 
            			 Corticosteroids are very effective in the treatment of eosinophil inflammation,
            
            			 and anti-IL-5 and anti-IL-4 antibodies seem to be effective, too.
         
         
         
            
Schlüsselwörter
         
         
            Allergie - Entzündung - Allergische Rhinitis - Eosinophile Granulozyten - IL-5
          
         
            
Key words
         
         
            Nasal allergy - Eosinophil inflammation - Therapy - IL-5
          
      
    
   
      
         Literatur
         
         
            - 1 Bronchial asthma. Fact sheet No. 206, December 1998. 
               					 Available at: http://www.who.int/inf-fs/en/fact206.html. Accessed December 23,
               
               					 1999. 
- 2 
               Sehmi R, Wood L J, Watson R, Foley R, Hamid Q, O'Byrne P M. et al .
               Allergen-induced increases in IL-5 receptor-subunit 
               					 expression on bone marrow-derived CD34+ cells from asthmatic subjects: a 
               					 novel marker of progenitor cell commitment towards eosinophilic 
               					 differentiation. 
               J Clin Invest. 
               1997; 
               100 
               2466-2475 
               
- 3 
               Yoshida T, Ikuta K, Sugaya H, Maki K, Takagi M, Kanazawa H. et al .
               Defective B-1 cell development and impaired immunity against 
               					 Angiostrongylus cantonensis in IL-5R-deficient mice. 
               Immunity. 
               1996; 
               4 
               483-494 
               
- 4 
               Nishinakamura R, Miyajima A, Mee P J, Tybulewicz V LJ, Murray R. 
               Hematopoiesis in mice lacking the entire 
               					 granulocyte-macrophage colony-stimulating factor/interleukin-3/interleukin-5
               
               					 functions. 
               Blood. 
               1996; 
               88 
               2458-2464 
               
- 5 
               Plager D A, Loegering D A, Weiler D A, Checkel J L, Wagner J M, Clarke N J. et al
               .
               A novel and highly divergent homolog of human eosinophil 
               					 granule major basic protein. 
               J Biol Chem. 
               1999; 
               274 
               14 464-14 473 
               
- 6 
               Popken-Harris P, McGrogan M, Loegering D A, Checkel J L, Kubo H, Thomas L L. et al
               .
               Expression, purification, and characterization of the 
               					 recombinant proform of eosinophil granule major basic protein. 
               J Immunol. 
               1995; 
               155 
               1472-1480 
               
- 7 
               Palframan R T, Collins P D, Severs N J, Rothery S, Williams T J, Rankin S M. 
               Mechanisms of acute eosinophil mobilization from the bone 
               					 marrow stimulated by interleukin 5: the role of specific adhesion molecules
               and 
               					 phosphatidylinositol 3-kinase. 
               J Exp Med. 
               1998; 
               188 
               1621-1632 
               
- 8 
               Palframan R T, Collins P D, Williams T J, Rankin S M. 
               Eotaxin induces a rapid release of eosinophils and their 
               					 progenitors from the bone marrow. 
               Blood. 
               1998; 
               91 
               2240-2248 
               
- 9 
               Kim Y K, Uno M, Hamilos D L, Beck L, Bochner B, Schleimer R. et al .
               Immunolocalization of CD34 in nasal polyposis: effect of 
               					 topical corticosteroids. 
               Am J Respir Cell Mol Biol. 
               1999; 
               20 
               388-397 
               
- 10 
               Dobrina A, Menegazzi R, Carlos T M, Nardon E, Cramer R, Zacchi T. et al .
               Mechanisms of eosinophil adherence to cultured vascular 
               					 endothelial cells: eosinophils bind to the cytokine-induced ligand vascular
               
               					 cell adhesion molecule-1 via the very late activation antigen-4 integrin 
               					 receptor. 
               J Clin Invest. 
               1991; 
               88 
               20-26 
               
- 11 
               Bochner B S, Luscinskas F W, Gimbrone M A Jr, Newman W, Sterbinsky S A, Derse-Anthony C P.
               et al .
               Adhesion of human basophils, eosinophils, and neutrophils to 
               					 interleukin 1-activated human vascular endothelial cells: contributions of 
               					 endothelial cell adhesion molecules. 
               J Exp Med. 
               1991; 
               173 
               1553-1557 
               
- 12 
               Hickey M J, Granger D N, Kubes P. 
               Molecular mechanisms underlying IL-4-induced leukocyte 
               					 recruitment in vivo: a critical role for the α4 integrin. 
               J Immunol. 
               1999; 
               163 
               3441-3448 
               
- 13 
               Ulfman L H, Kuijper P HM, van der Linden J AM, Lammers J WJ, Zwaginga J J, Koenderman L.
               
               Characterization of eosinophil adhesion to 
               					 TNF-α-activated endothelium under flow conditions: α4 integrins 
               					 mediate initial attachment, and E-selectin mediates rolling. 
               J Immunol. 
               1999; 
               163 
               343-350 
               
- 14 
               Daffern P J, Pfeifer P H, Ember J A, Hugli T E. 
               C3a is a chemotaxin for human eosinophils but not for 
               					 neutrophils, I: C3a stimulation of neutrophils is secondary to eosinophil 
               					 activation. 
               J Exp Med. 
               1995; 
               181 
               2119-2127 
               
- 15 
               Jose P J, Griffiths-Johnson D A, Collins P D, Walsh D T, Moqbel R, Totty N F. et al
               .
               Eotaxin: a potent eosinophil chemoattractant cytokine 
               					 detected in a guinea pig model of allergic airways inflammation. 
               J Exp Med. 
               1994; 
               179 
               881-887 
               
- 16 
               Kato M, Kephart G M, Talley N J, Wagner J M, Sarr M G, Bonno M. et al .
               Eosinophil infiltration and degranulation in normal human 
               					 tissue. 
               Anat Rec. 
               1998; 
               252 
               418-425 
               
- 17 
               Garcia-Zepeda E A, Rothenberg M E, Ownbey R T, Celestin J, Leder P, Luster A D. 
               Human eotaxin is a specific chemoattractant for eosinophil 
               					 cells and provides a new mechanism to explain tissue eosinophilia. 
               Nat Med. 
               1996; 
               2 
               449-456 
               
- 18 
               Lilly C M, Nakamura H, Kesselman H, Nagler-Anderson C, Asano K, Garcia-Zepeda E A.
               et al .
               Expression of eotaxin by human lung epithelial cells: 
               					 induction by cytokines and inhibition by glucocorticoids. 
               J Clin Invest. 
               1997; 
               99 
               1767-1773 
               
- 19 
               Lamkhioued B, Renzi P M, Abi-Younes S, Garcia-Zepada E A, Allakhverdi Z, Ghaffar O.
               et al .
               Increased expression of eotaxin in bronchoalveolar lavage and 
               					 airways of asthmatics contributes to the chemotaxis of eosinophils to the site
               
               					 of inflammation. 
               J Immunol. 
               1997; 
               159 
               4593-4601 
               
- 20 
               Teran L M, Mochizuki M, Bartels J, Valencia E L, Nakajima T, Hirai K. et al .
               Th1- and Th2-type cytokines regulate the expression and 
               					 production of eotaxin and RANTES by human lung fibroblasts. 
               Am J Respir Cell Mol Biol. 
               1999; 
               20 
               777-786 
               
- 21 
               Mochizuki M, Bartels J, Mallet A I, Christophers E, Schroder J M. 
               IL-4 induces eotaxin: a possible mechanism of selective 
               					 eosinophil recruitment in helminth infection and atopy. 
               J Immunol. 
               1998; 
               160 
               60-68 
               
- 22 
               Li L, Xia Y, Nguyen A, Lai Y H, Feng L, Mossman T R. et al .
               Effects of Th2 cytokines on chemokine expression in the lung: 
               					 IL-13 potently induces eotaxin expression by airway epithelial cells. 
               J Immunol. 
               1999; 
               162 
               2477-2487 
               
- 23 
               White J R, Imburgia C, Dul E, Appelbaum E, O'Donnell K, O'Shannessy D J. et al .
               Cloning and functional characterization of a novel human CC 
               					 chemokine that binds to the CCR3 receptor and activates human eosinophils. 
               J Leukoc Biol. 
               1997; 
               62 
               667-675 
               
- 24 
               Ohno I, Ohtani H, Nitta Y, Suzuki J, Hoshi H, Honma M. et al .
               Eosinophils as a source of matrix metalloproteinase-9 in 
               					 asthmatic airway inflammation. 
               Am J Respir Cell Mol Biol. 
               1997; 
               16 
               212-219 
               
- 25 
               Okada S, Kita H, George T J, Gleich G J, Leiferman K M. 
               Transmigration of eosinophils through basement membrane 
               					 components in vitro: synergistic effects of platelet-activating factor and 
               					 eosinophil-active cytokines. 
               Am J Respir Cell Mol Biol. 
               1997; 
               16 
               455-463 
               
- 26 
               Kumagai K, Ohno I, Okada S, Ohkawara Y, Suzuki K, Shinya T. et al .
               Inhibition of matrix metalloproteinases prevents 
               					 allergen-induced airway inflammation in a murine model of asthma. 
               J Immunol. 
               1999; 
               162 
               4212-4219 
               
- 27 
               Kim J T, Schimming A W, Kita H. 
               Ligation of FcRII (CD32) pivotally regulates survival of 
               					 human eosinophils. 
               J Immunol. 
               1999; 
               162 
               4253-4259 
               
- 28 
               Motegi Y, Kita H. 
               Interaction with secretory component stimulates effector 
               					 functions of human eosinophils but not of neutrophils. 
               J Immunol. 
               1998; 
               161 
               4340-4346 
               
- 29 
               Nagata M, Sedgwick J B, Kita H, Busse W W. 
               Granulocyte macrophage colony-stimulating factor augments 
               					 ICAM-1 and VCAM-1 activation of eosinophil function. 
               Am J Respir Cell Mol Biol. 
               1998; 
               19 
               158-166 
               
- 30 
               Bartemes K R, McKinney S, Gleich G J, Kita H. 
               Endogenous platelet-activating factor is critically involved 
               					 in effector functions of eosinophils stimulated with IL-5 or IgG. 
               J Immunol. 
               1999; 
               162 
               2982-2989 
               
- 31 
               Hozawa S, Haruta Y, Ishioka S, Yamakido M. 
               Effects of a PAF antagonist, Y-24 180, on bronchial 
               					 hyperresponsiveness in patients with asthma. 
               Am J Respir Crit Care Med. 
               1995; 
               152 
               1198-1202 
               
- 32 
               Frigas E, Loegering D A, Solley G O, Farrow G M, Gleich G J. 
               Elevated levels of the eosinophil granule major basic protein 
               					 in the sputum of patients with bronchial asthma. 
               Mayo Clin Proc. 
               1981; 
               56 
               345-353 
               
- 33 
               Minnicozzi M, Durán W N, Gleich G J, Egan R W. 
               Eosinophil granule proteins increase microvascular 
               					 macromolecular transport in the hamster cheek pouch. 
               J Immunol. 
               1994; 
               153 
               2664-2670 
               
- 34 Gleich G J, Adolphson C R. 
               The eosinophil and bronchial asthma: evidence for a critical 
                  					 role of eosinophils in pathophysiology. In: Sanderson CJ (Ed) Interleukin-5: from molecule to drug target for asthma. Vol
               
               					 125. New York; Marcel Dekker 1998: 1-37 
- 35 
               Wardlaw A J, Dunnette S, Gleich G J, Collins J V, Kay A B. 
               Eosinophils and mast cells in bronchoalveolar lavage in 
               					 subjects with mild asthma: relationship to bronchial hyperreactivity. 
               Am Rev Respir Dis. 
               1988; 
               137 
               62-69 
               
- 36 
               Gundel R H, Letts L G, Gleich G J. 
               Human eosinophil major basic protein induces airway 
               					 constriction and airway hyperresponsiveness in primates. 
               J Clin Invest. 
               1991; 
               87 
               1470-1473 
               
- 37 
               Elbon C L, Jacoby D B, Fryer A D. 
               Pretreatment with an antibody to IL-5 preserves the function 
               					 of pulmonary M2 muscarinic receptors in antigen challenged guinea-pigs. 
               Am J Respir Cell Mol Biol. 
               1995; 
               12 
               320-328 
               
- 38 
               Jacoby D B, Gleich G J, Fryer A D. 
               Human eosinophil major basic protein is an endogenous 
               					 allosteric antagonist at the inhibitory muscarinic M2 receptor. 
               J Clin Invest. 
               1993; 
               91 
               1314-1318 
               
- 39 
               Fryer A D, Jacoby D B. 
               Function of pulmonary M2 muscarinic receptors in 
               					 antigen-challenged guinea pigs is restored by heparin and 
               					 poly-L-glutamate. 
               J Clin Invest. 
               1992; 
               90 
               2292-2298 
               
- 40 
               Lefort J, Nahori M A, Ruffie C, Vargaftig B B, Pretolani M. 
               In vivo neutralization of eosinophil-derived major basic 
               					 protein inhibits antigen-induced bronchial hyperreactivity in sensitized guinea
               
               					 pigs. 
               J Clin Invest. 
               1996; 
               97 
               1117-1121 
               
- 41 
               Calhoun W J, Dick E, Schwartz L B, Busse W W. 
               A common cold virus, rhinovirus 16, potentiates airway 
               					 inflammation after segmental antigen bronchoprovocation in allergic 
               					 subjects. 
               J Clin Invest. 
               1994; 
               94 
               2200-2208 
               
- 42 
               Schwarze J, Hamelmann E, Bradley K L, Takeda K, Gelfand E W. 
               Respiratory syncytial virus infection results in airway 
               					 hyperresponsiveness and enhanced airway sensitization to allergen. 
               J Clin Invest. 
               1997; 
               100 
               226-233 
               
- 43 
               Slifman N R, Loegering D A, McKean D J, Gleich G J. 
               Ribonuclease activity associated with human 
               					 eosinophil-derived neurotoxin and eosinophil cationic protein. 
               J Immunol. 
               1986; 
               137 
               2913-2917 
               
- 44 
               Hamann K J, Barker R L, Loegering D A, Pease L R, Gleich G J. 
               Sequence of human eosinophil-derived neurotoxin cDNA: 
               					 identity of deduced amino acid sequence with human nonsecretory 
               					 ribonucleases. 
               Gene. 
               1989; 
               83 
               161-167 
               
- 45 
               Hamann K J, Ten R M, Loegering D A, Jenkins R B, Heise M T, Schad C R. et al .
               Structure and chromosome localization of the human 
               					 eosinophil-derived neurotoxin and eosinophil cationic protein genes: evidence
               
               					 for intronless coding sequences in the ribonuclease gene superfamily. 
               Genomics. 
               1990; 
               7 
               535-546 
               
- 46 
               Rosenberg H F, Dyer K D, Tiffany H L, Gonzalez M. 
               Rapid evolution of a unique family of primate ribonuclease 
               					 genes. 
               Nat Genet. 
               1995; 
               10 
               219-223 
               
- 47 
               Domachowske J B, Dyer K D, Bonville C A, Rosenberg H F. 
               Recombinant human eosinophil-derived neurotoxin/RNase 2 
               					 functions as an effective antiviral agent against respiratory syncytial 
               					 virus. 
               J Infect Dis. 
               1998; 
               177 
               1458-1464 
               
- 48 
               Saito T, Deskin R W, Casola A, Haeberle H, Olszewska B, Ernst P B. et al .
               Respiratory syncytial virus induced selective production of 
               					 the chemokine RANTES by upper airway epithelial cells. 
               J Infect Dis. 
               1997; 
               175 
               497-504 
               
- 49 
               Garofalo R, Kimpen J LL, Welliver R C, Ogra P L. 
               Eosinophil degranulation in the respiratory tract during 
               					 naturally acquired respiratory syncytial virus infection. 
               J Pediatr. 
               1992; 
               120 
               28-32 
               
- 50 Heppt W. 
               Zytologie und Histologie der Nasenschleimhaut. In: Heppt W, Bachert C Praktische Allergologie. Stuttgart; Thieme 1998: 80 
- 51 
               Rasp G, Thomas P A, Bujia J. 
               Eosinophil inflammation of the nasal mucosa in allergic and 
               					 non-allergic rhinitis measured by eosinophil cationic protein levels in native
               
               					 nasal fluid and serum. 
               Clin Exp Allergy. 
               1994; 
               24 
               1151-1156 
               
- 52 
               Klimek L, Rasp G. 
               Norm values for eosinophil cationic protein in nasal 
               					 secretions: influence of specimen collection. 
               Clin Exp Allergy. 
               1999; 
               29 
               367-374 
               
- 53 
               Barker R L, Gundel R H, Gleich G J, Checkel J L, Loegering D A, Pease L R. et al .
               Acidic polyamino acids inhibit human eosinophil granule major 
               					 basic protein toxicity: evidence of a functional role for proMBP. 
               J Clin Invest. 
               1991; 
               88 
               798-805 
               
- 54 
               Milgrom H, Frick R B Jr, Su J Q, Reimann J D, Bush R K, Watrous M L. et al .
               Treatment of allergic asthma with monoclonal anti-IgE 
               					 antibody. 
               N Engl J Med. 
               1999; 
               341 
               1966-1973 
               
- 55 
               Butterfield J H, Gleich G J. 
               Interferon-treatment of six patients with the idiopathic 
               					 hypereosinophilic syndrome. 
               Ann Intern Med. 
               1994; 
               121 
               648-653 
               
- 56 Klimek L, Rasp G. 
               Klinisches Monitoring der Entzündungsreaktion in der 
                  					 HNO. In: Kapp A, Klimek L, Werfel T Allergische Entzündungen. Stuttgart; Thieme 2002:
               125-140 
Priv.-Doz. Dr. Gerd Rasp
            Klinik und Poliklinik für Hals-, Nasen-, Ohrenkranke der 
            			 Ludwig-Maximilians-Universität München · Klinikum 
            			 Großhadern
            
            Marchioninistraße 15 · 81366 München
            
            Email: Rasp@hno.med.uni-muenchen.de