Abstract
Two methods are described for the regioselective displacement
of the primary hydroxy group in methyl glycosides with iodide. The
first method is a modification of a literature procedure employing
triphenylphosphine and iodine, where purification has been carried
out on a reverse phase column in order to efficiently separate the
desired iodoglycosides from triphenylphosphine oxide. The second
method employs a new procedure using sulfonylation in pyridine with
sterically hindered 2,4,6-trichloro- and 2,4,6-tribromobenzenesulfonyl
chloride. The sulfonates thus formed are effective leaving groups
and substitution with iodide can be carried out in a one-pot process.
Protection of the iodoglycosides is also described either by benzylation
with benzyl trichloroacetimidate or silylation with triethylsilyl
chloride.
Key words
carbohydrates - halogenation - regioselectivity - substitution - sulfonates
References
<A NAME="RP01402SS-1A">1a </A>
Leon-Ruaud P.
Plusquellec D.
Tetrahedron
1991,
47:
5185
<A NAME="RP01402SS-1B">1b </A>
Aspinall GO.
Carpenter RC.
Khondo L.
Carbohydr. Res.
1987,
165:
281
<A NAME="RP01402SS-1C">1c </A>
Garegg PJ.
Regberg T.
Stawinski J.
Strömberg R.
J.
Chem. Soc., Perkin Trans. 2
1987,
271
<A NAME="RP01402SS-1D">1d </A>
Garegg PJ.
Johansson R.
Ortega C.
Samuelsson B.
J. Chem.
Soc., Perkin Trans. 1
1982,
681
<A NAME="RP01402SS-1E">1e </A>
Garegg PJ.
Samuelsson B.
J. Chem.
Soc., Perkin Trans. 1
1980,
2866
<A NAME="RP01402SS-1F">1f </A>
Anisuzzaman AKM.
Whistler RL.
Carbohydr.
Res.
1978,
61:
511
<A NAME="RP01402SS-1G">1g </A>
Hanessian S.
Ponpipom MM.
Lavallee P.
Carbohydr.
Res.
1972,
24:
45
<A NAME="RP01402SS-2">2 </A> Polymer-bound Ph3 P and
other derivatives of Ph3 P have also been employed:
Classon B.
Liu Z.
Samuelsson B.
J. Org. Chem.
1988,
53:
6126
<A NAME="RP01402SS-3">3 </A> For a general review, see:
Castro BR.
Org. React.
1983,
29:
1
<A NAME="RP01402SS-4A">4a </A>
Poulsen CS.
Madsen R.
J.
Org. Chem.
2002,
67:
4441
<A NAME="RP01402SS-4B">4b </A>
Skaanderup PR.
Hyldtoft L.
Madsen R.
Monatsh. Chem.
2002,
133:
467
<A NAME="RP01402SS-4C">4c </A>
Skaanderup PR.
Madsen R.
Chem. Commun.
2001,
1106
<A NAME="RP01402SS-4D">4d </A>
Hyldtoft L.
Madsen R.
J. Am. Chem. Soc.
2000,
122:
8444
<A NAME="RP01402SS-5A">5a </A>
Jensen HS.
Limberg G.
Pedersen C.
Carbohydr. Res.
1997,
302:
109
<A NAME="RP01402SS-5B">5b </A>
Wessel H.-P.
Iversen T.
Bundle DR.
J.
Chem. Soc., Perkin Trans. 1
1985,
2247
<A NAME="RP01402SS-6">6 </A>
Désiré J.
Prandi J.
Eur. J. Org.
Chem.
2000,
3075
<A NAME="RP01402SS-7A">7a </A>
Ball DH.
Parrish FW.
Adv. Carbohydr. Chem.
1968,
23:
269
<A NAME="RP01402SS-7B">7b </A>
Ball DH.
Parrish FW.
Adv.
Carbohydr. Chem.
1969,
24:
139
<A NAME="RP01402SS-8">8 </A>
Wu M.-C.
Anderson L.
Slife CW.
Jensen LJ.
J. Org. Chem.
1974,
39:
3014
<A NAME="RP01402SS-9">9 </A>
Binkley ER.
Binkley RW. In
Preparative
Carbohydrate Chemistry
Hanessian S.
Marcel
Dekker;
New York:
1997.
p.87
<A NAME="RP01402SS-10A">10a </A>
Fleet GWJ.
Shing TKM.
Tetrahedron Lett.
1983,
24:
3657
<A NAME="RP01402SS-10B">10b </A>
Ball DH.
Bissett FH.
Chalk RC.
Carbohydr. Res.
1977,
55:
149
<A NAME="RP01402SS-11">11 </A>
Guthrie RD.
Thang S.
Aust. J. Chem.
1987,
40:
2133
<A NAME="RP01402SS-12">12 </A>
1,3,5-Tribromobenzene is about 10
times more expensive than 1,3,5-trichlorobenzene.
<A NAME="RP01402SS-13">13 </A>
Kleban M.
Kautz U.
Greul J.
Hilgers P.
Kugler R.
Dong H.-Q.
Jäger V.
Synthesis
2000,
1027
<A NAME="RP01402SS-14A">14a </A>
El Khadem HS.
Audichya TD.
Niemeyer DA.
Kloss J.
Carbohydr. Res.
1976,
47:
233
<A NAME="RP01402SS-14B">14b </A>
Ness RK.
Fletcher HG.
J.
Am. Chem. Soc.
1958,
80:
2007
<A NAME="RP01402SS-14C">14c </A>
Marriott DP.
Bantick JR.
Tetrahedron
Lett.
1981,
22:
3657
<A NAME="RP01402SS-15">15 </A>
Lehmann J.
Benson AA.
J. Am. Chem. Soc.
1964,
86:
4469
<A NAME="RP01402SS-16">16 </A>
Lehmann J.
Weckerle W.
Carbohydr. Res.
1972,
22:
23
<A NAME="RP01402SS-17">17 </A>
Anderson RJ.
Dixon RM.
Golding BT.
J. Organomet. Chem.
1992,
437:
227