Abstract
This is the first study of the one-handed pushup, and tries to show the effects of
forearm rotations. Previous studies of elbow loading have focused on passive loading
and small loads, because data from large loads during active exercise is not easy
to obtain. In order to investigate the biomechanical impact of hand position on the
elbow and the potential trauma mechanisms of outstretched elbow, joint loading across
the elbow was analyzed for three forearm rotational positions, neutral, 90° internal
rotation and 90° external rotation. Both kinematic and kinetic data were collected
from eight volunteers by the Motion Analysis System and a Kistler Force Plate. Statistical
analysis of the data delineates the relationship between elbow joint load and hand
rotational position during one-handed pushup, and also provides useful biomechanical
information for this challenging exercise. The axial and valgus stresses and forces
are the major concerns. The peak axial forces exerted on the elbow joint averaged
65 % of the body weight when the hand position was neutral, and was significantly
reduced with the hand rotated either internally or externally. The peak valgus shear
force with the hand externally rotated was 50 % greater than the other two positions.
Thus, outward rotation of the hand is a stressful position that should be avoided
during one-handed pushup exercise or forward falls with outstretched hands in order
to reduce the risk of elbow injuries.
Key words
One-handed pushup - elbow joint loading - kinematics - kinetics - trauma mechanism
References
- 1 Whitaker T D. OrthoTrak Full Body Gait Analysis-Reference Manual. California; Motion
Analysis Corporation 1993
- 2 An K N, Morrey B F.
Biomechanics of the elbow. In: Morrey BF (ed) The Elbow and its Disorders. Philadelphia; Sanders 1993: 43-61
- 3
Bauman M D, Plamondon A, Gagnon D.
Comparative assessment of 3D joint marker sets for the biomechanical analysis of occupational
tasks.
Internal J of Industrial Ergonomics.
1998;
21
475-482
- 4
Bhambhani Y, Maikala R.
Gender differences during treadmill walking with graded loads: biomechanical and physiological
comparisons.
Eur J Appl Physiol.
2000;
81
75-83
- 5
Chiu J, Robinovitch S N.
Prediction of upper extremity impact forces during falls on the outstretched hand.
J Biomech.
1998;
31
1169-1176
- 6 Dempster W T. Space requirements of the seated operator. Dayton OH; Wright-Patterson
Air Force Base 1955: 55-159
- 7
Donkers M J, An K N, Chao E Y, Morrey B F.
Hand position affects elbow joint load during push-up exercise.
J Biomech.
1993;
26
625-632
- 8
Evetovich T K, Housh T J, Johnson G O, Smith D B, Ebersole K T, Perry S R.
Gender comparisons of the mechanomyographic responses to maximal concentric and eccentric
isokinetic muscle actions.
Medicine & Science in Sports & Exercise.
1998;
30
1697-1702
- 9
Harmon K G, Ireland M L.
Gender differences in noncontact anterior cruciate ligament injuries.
Clinics in Sports Medicine.
2000;
19
287-302
- 10
Hart D A, Archambault J M, Kydd A, Reno C, Frank C B, Herzog W.
Gender and neurogenic variables in tendon biology and repetitive motion disorders.
Clin Orthop Rel Res.
1998;
1
44-56
- 11 Haug E J. Computer Aided Kinematics and Dynamics of Mechanical Systems. Volume
1: Basic Methods. Massachusetts; Allyn and Bacon 1989
- 12 Kistler T J. Multicomponent measuring force plate for biomechanics and industry
type 9287. Switzerland; Kistler 1989
- 13
McCaw S T, Devita P.
Errors in alignment of center of pressure and foot coordinates affect predicted lower
extremity torques.
J Biomech.
1995;
28
985-988
- 14
Morrey B F, An K N, Stormont T J.
Force transmission through the radial head.
J Bone and Joint Surg [Am].
1988;
70
250-256
- 15
Neviaser J S, Wickstrom J K.
Dislocation of the elbow: a retrospective study of 115 patients.
South Med J.
1977;
70
172-173
- 16
O'Driscoll S W, Morrey B F, Korinek S, An K N.
Elbow subluxation and dislocation. A spectrum of instability.
Clin Orthop Rel Res.
1992;
2
186-197
- 17 Shott S. Statistics for health professionals. Philadelphia; W. B. Saunders 1990
- 18 Winter D A. Biomechanics and motor control of human movement. New York; Wiley 1990:
75-102
- 19
Woltring H J.
A FORTRAN package for generalized, cross-validatory spline smoothing and differentiation.
Adv Eng Software.
1986;
8
104-113
- 20
Xu L, Strauch R J, Athesian G A, Pawluk R J, Mow V C, Rosenwasser M P.
Topography of the osteoarthritic thumb carpometacarpal joint and its variations with
regard to gender, age, site, and osteoarthritic stage.
J Hand Surgery - Am.
1998;
23
454-464
C. J. Lin, MD
Department of Orthopedic Surgery · National Cheng Kung University Medical College
138 Sheng Li Road · Tainan 70428 · Taiwan · ROC ·
Telefon: 886-6-276-6613
Fax: 886-6-276-618
eMail: mark@mail.ncku.edu.tw