Zusammenfassung
Einleitung: Die Reizschwelle zur Auslösung motorischer Antworten (motor threshold; MT) stellt
einen Parameter für die kortikale Exzitabilität dar und wird zur Adaptation der individuell
genutzten Reizstärke bei der transkraniellen magnetischen Kortexstimulation (TMS)
genutzt. Es ist nicht bekannt, ob die MT auch ein Maß für die Erregbarkeit nichtmotorischer
Kortexareale wie des visuellen Kortex darstellt und mit den Schwellenwerten zur Auslösung
von Phosphenen (phosphene threshold; PT) korreliert. Methodik: Bei 22 gesunden Probanden wurden mit einem Dantec-MagPro-Stimulator und einer achtförmigen
Spule biphasische Reize über dem primären, motorischen und visuellen Kortex appliziert
und individuell die MT und PT (jeweils in % der maximalen Geräteausgangsleistung)
bestimmt. Ergebnisse: Es bestand keine Korrelation der MT mit der PT. Die PT lag mit durchschnittlich 58,5
± 12,1 % signifikant über der MT von 40,5 ± 6,6 % (p = 0,01). Diskussion: Die MT stellt keinen Parameter zur Beurteilung der transkraniellen Erregbarkeit des
visuellen Kortex dar. Bei einer TMS des visuellen Kortex sollte die Reizstärke an
die PT adaptiert werden, um interindividuell vergleichbare Reizeffekte zu erzielen.
Abstract
Introduction: Motor threshold (MT) as determined by transcranial magnetic stimulation (TMS) is
used as an index for cortex excitability. In TMS stimulus intensity is usually referred
to the individual MT. It is unclear whether MT also reflects the excitability of non-motor
cortical areas such as the visual cortex or correlates with the phosphene threshold
(PT) as demonstrated by TMS over the occipital skull. Methods: In 22 healthy volunteers TMS with single pulses was applied over the motor and visual
cortex with a figure-of-eight shaped coil connected to a Dantec MagPro stimulator.
Biphasic pulses were used to avoid influence of current direction on excitatory effects.
MT and PT were individually measured (% of maximum stimulator output). Results: There was no correlation between MT and PT. Compared to mean MT (40.5 ± 6.6 %) PT
was significantly higher (58.5 ± 12,1 %) (p = 0.01). Discussion: MT does not reflect the excitability of the visual cortex. In TMS of the visual cortex
PT should be used to define the stimulus intensity to compare stimulus effects interindividually.
Key words
Motor threshold - phosphene threshold - cortical excitability - transcranial magnetic
stimulation
Literatur
1
Hallett M.
Transcranial magnetic stimulation and the human brain.
Nature.
2000;
406
147-150
2
Pascual-Leone A, Walsh V, Rothwell J.
Transcranial magnetic stimulation in cognitive neuroscience - virtual lesion, chronometry,
and functional connectivity.
Curr Opin Neurobiol.
2000;
10
232-237
3
George M S, Lisanby S H, Sackeim H A.
Transcranial magnetic stimulation: applications in neuropsychiatry.
Arch Gen Psychiatry.
1999;
56
300-311
4
Loo C K, Taylor J L, Gandevia S C, McDarmont B N, Mitchell P B, Sachdev P S.
Transcranial magnetic stimulation (TMS) in controlled treatment studies: are some
„sham” forms active?.
Biol Psychiatry.
2000;
47
325-331
5
Siebner H R, Tormos J M, Ceballos-Baumann A O, Auer C, Catala M D, Conrad B, Pascual-Leone A.
Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in
writer's cramp.
Neurology.
1999;
52
529-537
6
Hasey G.
Transcranial magnetic stimulation in the treatment of mood disorder: review and comparison
with electroconvulsive therapy.
Can J Psychiatry.
2001;
46
720-727
7
Rossini P M, Barker A T, Berardelli A.
Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots:
basic principles and procedures for routine clinical application. Report of an IFCN
committee.
Electroencephalogr Clin Neurophysiol.
1994;
91
79-92
8
Wassermann E M.
Risk and safety of repetitive transcranial magnetic stimulation: Report and suggested
guidelines from the International Workshop on the Safety of Repetitive Transcranial
Magnetic Stimulation, June 5 - 7, 1996.
Electroencephalogr Clin Neurophysiol .
1998;
108
1-16
9
Kammer T, Beck S, Erb M, Grodd W.
The influence of current direction on phosphene thresholds evoked by transcranial
magnetic stimulation.
Clin Neurophysiol.
2001;
112
2015-2021
10
Meyer B U, Diehl R, Steinmetz H, Britton T C, Benecke R.
Magnetic stimuli applied over motor and visual cortex: influence of coil position
and field polarity on motor responses, phosphenes, and eye movements.
Electroencephalogr Clin Neurophysiol.
1991;
43, Suppl
121-134
11
Boroojerdi B, Bushara K O, Corwell B, Immisch I, Battaglia F, Muellbacher W, Cohen L G.
Enhanced excitability of the human visual cortex induced by short-term light deprivation.
Cerebral Cortex.
2000;
10
529-534
12
Ziemann U.
Transkranielle Magnetstimulation: Neue Einsatzmöglichkeiten zur Messung kortikaler
und kortikospinaler Erregbarkeit.
Akt Neurol.
2001;
28
249-264
13
Mulleners W M, Chronicle E P, Palmer J E, Koehler P J, Vredeveld J W.
Visual cortex excitability in migraine with and without aura.
Headache.
2001;
41
565-572
14
Amassian V E, Cracco R Q, Maccabee P J, Cracco J B, Rudell A P, Eberle L.
Transcranial magnetic stimulation in study of the visual pathway.
J Clin Neurophysiol.
1998;
15
288-304
15
Brasil-Neto J P, Cohen L G, Panizza M, Nilsson J, Roth B J, Hallett M.
Optimal focal transcranial magnetic activation of the human motor cortex: effects
of coil orientation, shape of the induced current pulse, and stimulus intensity.
J Clin Neurophysiol.
1992;
9
132-136
16
Niehaus L, Meyer B U, Weyh T.
Influence of pulse configuration and direction of coil current on the excitation effects
of magnetic motor cortex and nerve stimulation.
Clin Neurophysiol.
2000;
111
75-80
17
Niehaus L, Hoffmann K T, Grosse P, Röricht S, Meyer B U.
MRI study of human brain exposed to high-dose repetitive magnetic stimulation.
Neurology.
2000;
54
256-258
18
Stewart L M, Walsh V, Rothwell J C.
Motor and phosphene thresholds: a transcranial magnetic stimulation correlation study.
Neuropsychologia.
2001;
39
415-419
19
Rothwell J C.
Techniques and mechanisms of action of transcranial magnetic stimulation of the human
motor cortex.
J Neurosci Methods.
1997;
74
113-122
20
Ziemann U, Lönnecker S, Steinhoff B J, Paulus W.
Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial
magnetic stimulation study.
Ann Neurol.
1996;
40
367-378
21
Aurora S K, Ahmad B K, Welch K M, Bhardwaj P, Ramadan N M.
Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in
migraine.
Neurology.
1998;
50
1111-1114
22
Afra J, Mascia A, Gerard P, Maertens de Noordhout A, Schoenen J.
Interictal cortical excitability in migraine: a study using transcranial magnetic
stimulation of motor and visual cortices.
Ann Neurol.
1998;
44
209-215
23
Aurora S K, al-Sayeed F, Welch K M.
The cortical silent period is shortened in migraine with aura.
Cephalagia.
1999;
19
708-712
24
Werhahn K J, Wiseman K, Herzog J, Förderreuther S, Dichgans M, Straube A.
Motor cortex excitability in patients with migraine with aura and hemiplegic migraine.
Cephalalgia.
2000;
20
45-50
Dr. med. Ludwig Niehaus
Klinik und Poliklinik für Neurologie · Charité · Campus-Virchow-Klinikum
Augustenburger Platz 1
13353 Berlin