Abstract
A three-step synthesis of stable and storable α-benzenesulfinyl
enol ethers from lactones entails (a) conversion of a lactone to
an enol triflate or phosphate; (b) Ni(0) and Pd(0) cross-coupling of
the enol triflate or phosphate with a sodium arenethiolate to give an α-arenethio
enol ether; and (c) oxidation of an arenethio group to a sulfoxide.
The α-benzenesulfinyl enol ethers undergo sulfoxide-lithium
exchange on reaction with n -BuLi to give α-lithiated
enol ethers thus making the α-benzenesulfinyl group a surrogate
for the trialkylstannyl group which has hitherto served as the most
common precursor to α-lithiated enol ethers.
Key words
coupling - nickel - palladium - catalysis - sulfoxides - enol ether
References
<A NAME="RZ00303SS-1">1 </A>
Paul R.
Tchelitcheff S.
C. R. Acad. Sci.
1951,
232:
2230
<A NAME="RZ00303SS-2">2 </A>
Schöllkopf U.
Hänssle P.
Liebigs Ann. Chem.
1972,
763:
208
<A NAME="RZ00303SS-3">3 </A>
Baldwin JE.
Höfle GA.
Lever OW.
J. Am. Chem. Soc.
1974,
96:
7125
<A NAME="RZ00303SS-4">4 </A>
Friesen RW.
J.
Chem. Soc., Perkin Trans. 1
2001,
1969
<A NAME="RZ00303SS-5">5 </A>
Boeckman RK.
Bruza KJ.
Tetrahedron Lett.
1977,
4187
<A NAME="RZ00303SS-6">6 </A>
Boeckman RK.
Bruza KJ.
Tetrahedron
1981,
37:
3997
<A NAME="RZ00303SS-7">7 </A>
Crich D.
Ritchie TJ.
Tetrahedron
1988,
44:
2319
<A NAME="RZ00303SS-8">8 </A>
Paquette LA.
Oplinger JA.
Tetrahedron
1989,
45:
107
<A NAME="RZ00303SS-9">9 </A>
Friesen RW.
Sturino CF.
Daljeet AK.
Kolaczewska A.
J. Org.
Chem.
1991,
56:
1944
<A NAME="RZ00303SS-10">10 </A>
Nicolaou KC.
Hwang C.-K.
Duggan ME.
J.Chem. Soc.,
Chem. Commun.
1986,
925
<A NAME="RZ00303SS-11">11 </A>
Hanessian S.
Martin M.
Desai RC.
J.
Chem. Soc., Chem. Commun.
1986,
926
<A NAME="RZ00303SS-12">12 </A>
Santiago B.
Soderquist J.
J. Org. Chem.
1992,
57:
5844
<A NAME="RZ00303SS-13">13 </A>
Barber C.
Jarowicki K.
Kocienski PJ.
Synlett
1991,
197
<A NAME="RZ00303SS-14">14 </A>
Nicolaou KC.
Shi GQ.
Gunzner JL.
Gaertner P.
Yang Z.
J.
Am. Chem. Soc.
1997,
119:
5467
<A NAME="RZ00303SS-15">15 </A>
Nicolaou KC.
McGarry DG.
Sommers PK.
J. Am. Chem. Soc.
1990,
112:
3696
<A NAME="RZ00303SS-16">16 </A>
Lesimple P.
Beau JM.
Jaurand G.
Sinay P.
Tetrahedron Lett.
1986,
27:
6201
<A NAME="RZ00303SS-17">17 </A>
Gunn A.
Jarowicki K.
Kocienski PJ.
Lockhart S.
Synthesis
2001,
331
<A NAME="RZ00303SS-18">18 </A>
McDonald FE.
Chem.-Eur.
J.
1999,
5:
3103
<A NAME="RZ00303SS-19">19 </A>
Wildman T.
Kocienski PJ.
Narquizian R.
Whittingham WG.
Synthesis
2002,
393
<A NAME="RZ00303SS-20">20 </A>
Yu W.
Jin Z.
J. Am. Chem. Soc.
2000,
122:
9840
<A NAME="RZ00303SS-21">21 </A>
Yu W.
Jin Z.
J. Am. Chem. Soc.
2001,
123:
3369
<A NAME="RZ00303SS-22">22 </A>
Milne JE.
Jarowicki K.
Kocienski PJ.
Synlett
2002,
607
<A NAME="RZ00303SS-23">23 </A>
Milne JE.
Jarowicki K.
Kocienski PJ.
Alonso J.
Chem. Commun.
2002,
426
<A NAME="RZ00303SS-24">24 </A>
Luker T.
Hiemstra H.
Speckamp WN.
J.
Org. Chem.
1997,
62:
3592
<A NAME="RZ00303SS-25">25 </A>
Percec V.
Bae J.-Y.
Hill DH.
J.
Org. Chem.
1995,
60:
6895
<A NAME="RZ00303SS-26">26 </A>
Lockard JP.
Schroeck CW.
Johnson CR.
Synthesis
1973,
485
<A NAME="RZ00303SS-27">27 </A>
Durst T.
LeBelle MJ.
Van den Elzen R.
Tin K.-C.
Can. J. Chem.
1974,
52:
761
<A NAME="RZ00303SS-28">28 </A>
Neef G.
Eder U.
Seeger A.
Tetrahedron
Lett.
1980,
21:
903
<A NAME="RZ00303SS-29">29 </A> For alternative mechanisms to sulfoxide-lithium
exchange reactions see:
Theobald PG.
Okamura WH.
J. Org. Chem.
1990,
55:
741
<A NAME="RZ00303SS-30">30 </A>
Zheng N.
McWilliams JC.
Fleitz FJ.
Armstrong JD.
Volante RP.
J. Org. Chem.
1998,
63:
9606
<A NAME="RZ00303SS-31">31 </A> For references to transition metal
mediated cross-coupling reactions leading to C-S formation,
see:
Li GY.
Zheng G.
Noonan AF.
J. Org. Chem.
2001,
66:
8677
<A NAME="RZ00303SS-32">32 </A> Sulfoxide-lithium exchange
processes have recently been used to prepare glycosyllithiums:
Carpintero M.
Nieto I.
Fernández-Mayoralas A.
J. Org. Chem.
2001,
66:
1768
<A NAME="RZ00303SS-33">33 </A> It is likely that a previous report
of the conversion of anomeric glycosyl sulfoxides to pyranoid glycals
using organolithiums involved a sulfoxide-lithium exchange:
Casillas M.
Gómez AM.
López JC.
Valverde S.
Synlett
1996,
628
<A NAME="RZ00303SS-34">34 </A> For the generation of α-halo
carbanions from aryl α-haloalkyl sulfoxides and aryl α-haloalkenyl
sulfoxides by sulfoxide-metal exchange, see:
Satoh T.
Takano K.
Tetrahedron
1996,
52:
2349
<A NAME="RZ00303SS-35">35 </A>
Lipton MF.
Sorenson CM.
Sadler AC.
Shapiro RH.
J.
Organometal. Chem.
1980,
186:
155
<A NAME="RZ00303SS-36">36 </A>
Aquino M.
Cardani S.
Fronza G.
Fuganti C.
Fernandez RP.
Tagliani A.
Tetrahedron
1991,
47:
7887
<A NAME="RZ00303SS-37">37 </A>
Carroll FI.
Mitchell GN.
Blackwell JT.
Sobti A.
Meck R.
J.
Org. Chem.
1974,
39:
3890
<A NAME="RZ00303SS-38">38 </A>
Yato M.
Homma K.
Ishida A.
Tetrahedron
2001,
57:
5353
<A NAME="RZ00303SS-39">39 </A>
Nicolle JP.
Hamon JP.
Wakselman M.
Bull.
Soc. Chim. Fr.
1977,
83
<A NAME="RZ00303SS-40">40 </A>
Harris L.
Jarowicki K.
Kocienski PJ.
Synlett
1996,
903
<A NAME="RZ00303SS-41">41 </A>
Meyer WL.
Taylor PW.
Reed SA.
Leister MC.
Schneider HJ.
Schmidt G.
Evans FE.
Levine RA.
J. Org.
Chem.
1992,
57:
291
<A NAME="RZ00303SS-42">42 </A>
Murahashi S.-i.
Naota T.
Ito K.
Maeda Y.
Taki H.
J. Org. Chem.
1987,
52:
4319