Abstract
During pregnancy, pancreatic islets undergo structural and functional changes in response
to an increased demand for insulin. Different hormones, especially placental lactogens,
mediate these adaptive changes. Prolactin (PRL) mainly exerts its biological effects
by activation of the JAK2/STAT5 pathway. PRL also stimulates some biological effects
via activation of IRS-1, IRS-2, PI 3-kinase, and MAPK in different cell lines. Since
IRS-2 is important for the maintenance of pancreatic islet cell mass, we investigated
whether PRL affects insulin-signaling pathways in neonatal rat islets. PRL significantly
potentiated glucose-induced insulin secretion in islets cultured for 7 days. This
effect was blocked by the specific PI 3-kinase inhibitor wortmannin. To determine
possible effects of PRL on insulin-signaling pathways, fresh islets were incubated
with or without the hormone for 5 or 15 min. Immunoprecipitation and immunoblotting
with specific antibodies showed that PRL induced a dose-dependent IRS-1 and IRS-2
phosphorylation compared to control islets. PRL-induced increase in IRS-1/-2 phosphorylation
was accompanied by an increase in the association with and activation of PI 3-kinase.
PRL-induced IRS-2 phosphorylation and its association with PI 3-kinase did not add
to the effect of insulin. PRL also induced JAK2, SHC, ERK1 and ERK2 phosphorylation
in neonatal islets, demonstrating that PRL can activate MAPK. These data indicate
that PRL can stimulate the IRSs/PI 3-kinase and SHC/ERK pathways in islets from neonatal
rats.
Key words
Prolactin - Insulin - Neonatal Rat Islets - Insulin Receptors Substrates 1/2 - PI
3-Kinase - MAP-Kinase - Wortmannin
References
- 1
Ihle J N, Witthuhn B A, Quelle F W, Yamamoto K, Thierfelder W E, Kreider B, Silvennoinen O.
Signaling by the cytokine receptor superfamily: JAKs and STATs.
Trends Biochem Sci.
1994;
19
222-227
- 2
Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly P A.
Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes
observed in PRL receptor knockout mice.
Endocr Rev.
1998;
19
225-268
- 3
Cousin S P, Hügl S R, Myers M G, White M F, Reifel-Miller A, Rhodes C J.
Stimulation of pancreatic β-cell proliferation by growth hormone is glucose-dependent:
signal transduction via Janus Kinase 2 (JAK2 )/signal transducer and activator of
transcription 5 (STAT5) with no crosstalk to insulin receptor substrate-mediated mitogenic
signaling.
Biochem J.
1999;
344
649-658
- 4
Nielsen J H, Linde S, Welinder B S, Billestrup N, Madsen O D.
Growth hormone is a growth factor for the differentiated pancreatic beta-cell.
Mol Endocrinal.
1989;
3
165-173
- 5
Freeman M E, Kanyicska B, Lerant A, Nagy G.
Prolactin: structure, function, and regulation of secretion.
Physiol Rev.
2000;
80
1523-1631
- 6
Erwin R A, Kirken R A, Malabarba M G, Farrar W L, Rui H.
Prolactin activates Ras via signaling protein SHC, growth factor fereceptor bound
2, and Son of Sevenless.
Endocrinology.
1995;
156
3512-3518
- 7
Goupille O, Barnier J-V, Guibert B, Paly J, Djiane J.
Effect of PRL on MAPK activation: negative regulatory role of the C-terminal part
of the PRL receptor.
Mol Cell Endocrinol.
2000;
159
133-146
- 8
Yamauchi T, Kaburagi Y, Ueki K, Tsuji Y, Stark G R, Kerr I M, Tsushima T, Akanuma Y,
Komuro I, Tobe K, Yasaki Y, Kadowaki T.
Growth hormone and prolactin stimulate tyrosine phosphorylation of insulin receptor
substrate-1, -2, and -3, their association with p85 phosphatidylinositol 3-kinase
(PI3-kinase), and concomitantly PI3-kinase activation via JAK2 kinase.
J Biol Chem.
1998;
273
15 719-15 726
- 9
Nielsen J H, Svensson C, Galsgaard E D, Møldrup A, Billestrup N.
Beta cell proliferation and growth factors.
J Mol Med.
1999;
77
62-66
- 10
Nielsen J H, Galsgaard E D, Møldrup A, Friedrichsen B N, Billestrup N, Hansen J A,
Lee Y C, Carlsson C.
Regulation of β-cell mass by hormones and growth factors.
Diabetes.
2001;
50
[Suppl 1], S25-S29
- 11
Folli F, Saad M JA, Backer J M, Kahn C R.
Insulin stimulation of phosphatidylinositol 3-kinase activity and association with
insulin receptor substrate 1 in liver and muscle of the intact rat.
J Biol Chem.
1992;
267
22 171-22 177
- 12
Velloso L A, Carneiro E M, Crepaldi S C, Boschero A C, Saad M JA.
Glucose- and insulin-induced phosphorylation of the insulin receptor and its primary
substrates IRS-1 and IRS-2 in rat pancreatic islets.
FEBS Lett.
1995;
377
353-357
- 13
Harbeck M C, Louie D C, Howland J, Wolf B A, Rothenberg P L.
Expression of insulin receptor mRNA and insulin receptor substrate 1 in pancreatic
islet beta-cells.
Diabetes.
1996;
45
711-717
- 14
Saad M JA, Carvalho C RO, Thirone A CP, Velloso L A.
Insulin induces tyrosine phosphorylation of JAK2 in insulin-sensitive tissues of intact
rat.
J Biol Chem.
1996;
271
22 100-22 104
- 15
Trumper K, Trumper A, Trusheim H, Arnold R, Goke B, Horsch D.
Integrative mitogenic role of protein kinase B/AKT in β-cells.
Ann N Y Acad Sci.
2000;
921
242-250
- 16
Baixeras E, Jeay S, Kelly P A, Postel-Vinay M C.
The proliferative and antiapoptotic actions of growth hormone and insulin-like growth
factor-1 are mediated through distinct signaling pathways in the Pro-B Ba/F3 cell
line.
Endocrinology.
2001;
142
2968-2977
- 17
Parsons J A, Brelje T C, Sorenson R L.
Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation
and insulin secretion correlates with the onset of placental lactogen secretion.
Endocrinology.
1992;
130
1459-1466
- 18
Sorenson R L, Brelje T C, Roth C.
Effects of steroid and lactogenic hormones on islets of Langerhans: a new hypothesis
for the role of pregnancy steroids in the adaptation islets to pregnancy.
Endocrinology.
1993;
133
2227-2234
- 19
Sorenson R L, Brelje T C.
Adaptation of islets of Langerhans to pregnancy: β-cells growth, enhanced insulin
secretion and the role of lactogenic hormones.
Horm Metab Res.
1997;
29
301-307
- 20
Green I C, Taylor K W.
Effects of pregnancy in the rat on the size and insulin secretory response of the
islets of Langerhans.
J Endocr.
1972;
54
317-325
- 21
Parsons J A, Bartke A, Sorenson R L.
Number and size of islets of Langerhans in pregnant, human growth hormone-expressing
transgenic, and pituitary dwarf mice: effect of lactogenic hormones.
Endocrinology.
1995;
136
2013-2021
- 22
Fleenor D, Petryk A, Driscoll P, Freemark M.
Constitutive expression of placental lactogen in pancreatic β cell: effects on cell
morphology, growth, and gene expression.
Pediatr Res.
2000;
47
136-142
- 23
Vasavada R C, Garcia-Ocaña A, Zawalich W S, Sorenson R L, Dann P, Syed M, Ogren L,
Talamantes F, Stewart A F.
Targeted expression of placental lactogen in the beta cells of transgenic mice results
in beta cell proliferation, islet mass augmentation, and hypoglycemia.
J Biol Chem.
2000;
275
15 399-15 406
- 24
Galsgaard E D, Nielsen J H, Moldrup A.
Regulation of prolactin receptor (PRLR) gene expression in insulin-producing cells.
Prolactin and growth hormone activate one of the rat prlr gene promoters via STAT5a
and STAT5b.
J Biol Chem.
1999;
274
18 686-18 692
- 25
Boschero A C, Tombaccini D, Atwater I.
Effects of glucose on insulin release and 86Rb permeability in cultured neonatal and adult islets.
FEBS Lett.
1988;
236
375-379
- 26
Boschero A C, Crepaldi S C, Carneiro E M, Delattre E, Atwater I.
Prolactin induces maturation of glucose sensing mechanisms in cultured neonatal rat
islets.
Endocrinology.
1993;
133
515-520
- 27
Boschero A C, Tombaccini D, Carneiro E M, Atwater I J.
Differences in K+ permeability between cultured adult and neonatal rat islets of Langerhans in response
to glucose, tolbutamide, diazoxide and theophylline.
Pancreas.
1993;
8
44-49
- 28
Crepaldi S C, Carneiro E M, Boschero A C.
Long-term effect of prolactin treatment on glucose-induced insulin secretion in cultured
neonatal rat islets.
Horm Metab Res.
1997;
29
220-224
- 29
Mendonça A C, Carneiro E M, Bosqueiro J R, Crepaldi-Alves S C, Boschero A C.
Development of the insulin secretion mechanism in fetal and neonatal rat pancreatic
B-cells: response to glucose, K+, theophylline, and carbamylcholine. Braz.
J Med Biol Res.
1998;
31
841-846
- 30
Withers D J, Gutierrez J S, Towery H, Burks D J, Ren J-M, Previs S, Zhang Y, Bernal D,
Pons S, Shulman G I, Bonner-Weir S, White M F.
Disruption of IRS-2 causes type 2 diabetes in mice.
Nature.
1998;
391
900-904
- 31
Briaud I, Rouault C, Bailbé D, Portha B, Reach G, Poitout V.
Glucose-induced insulin mRNA accumulation is impaired in islets from neonatal streptozotocin-treated
rats.
Horm Metab Res.
2000;
32
103-106
- 32
Laemmli U K.
Cleavage of a structural proteins during the assembly of the head of bacteriophage
T.
Nature.
1970;
227
680-685
- 33
Yu Z-W, Eriksson J W.
The upregulating effect of insulin and vanadate on cell surface insulin receptors
in rat adipocytes is modulated by glucose and energy availability.
Horm Metab Res.
2000;
32
310-315
- 34
Berlanga J J, Gualillo O, Buteau H, Applanat M, Kelly P A, Edery M.
Prolactin actives tyrosyl phosphorylation of insulin receptor substrate1 and phosphatidylinositol-3-OH
kinase.
J Biol Chem.
1997;
272
2050-2052
- 35
Ptasznik A, Beattie G M, Mally M I, Cirulli V, Lopez A, Hayek A.
Phosphatidylinositol 3-kinase is a negative regulator of cellular differentiation.
J Cell Biol.
1997;
137
1127-1136
- 36
Levy-Toledano R, Blaettler D H, LaRochelle W J, Taylor S I.
Insulin-induced activation of phosphatidylinositol (PI) 3-kinase.
J Biol Chem.
1995;
270
30 018-30 022
- 37
Velloso L A, Folli F, Sun X J, White M F, Saad M JA, Kahn C R.
Cross-talk between the insulin and angiotensin signaling systems.
Proc Natl Acad Sci USA.
1996;
93
12 490-12 495
- 38
Fasshauer M, Klein J, Ueki K, Kriauciunas K M, Benito M, White M F, Kahn C R.
Essential role of insulin receptor substrate-2 in insulin stimulation of Glut 4 translocation
and glucose uptake in brown adipocytes.
J Biol Chem.
2000;
275
25 494-25 501
- 39
Mandrup-Poulsen T.
Beta-cell apoptosis: stimuli and signaling.
Diabetes.
2001;
50 [Suppl 1]
S58-S63
- 40
Nunoi K, Yasuda K, Tanaka H, Kubota A, Okamoto Y, Adachi T, Shihara N, Uno M, Xu L M,
Kagimoto S, Seino Y, Yamada Y, Tsuda K.
Wortmannin, a PI 3-kinase inhibitor: promoting effect on insulin secretion from pancreatic
beta cells through cAMP-dependent pathway.
Biochem Biophys Res Commun.
2000;
270
798-805
- 41
Aspinwall C A, Qian W-J, Roper M G, Kulkarni R N, Kahn C R, Kennedy R T.
Roles of insulin receptor substrate-1, phosphatidylinositol 3-kinase, and release
of intracellular Ca2+ stores in insulin-stimulated insulin secretion in β-cells.
J Biol Chem.
2000;
275
22 331-22 341
- 42
Da Silva Xavier G, Varadi A, Ainscow E K, Rutter G A.
Regulation of gene expression by glucose in pancreatic beta-cells (MIN 6) via insulin
secretion and activation of phosphatidylinositol 3-kinase.
J Biol Chem.
2000;
275
36 269-36 277
- 43
Aikin R, Rosenberg L, Maysinger D.
Phosphatidylinositol 3-kinase signaling to AKT mediates survival in isolated canine
islets of Langerhans.
Biochem Biophys Res Commun.
2000;
277
455-461
- 44
Friedrichsen B N, Galsgaard E D, Nielsen J H, Møldrup A.
Growth hormone- and prolactin- induced proliferation of insulinoma cells, INS-1, depends
on activation of STAT5 (signal transducer and activator of transcription 5).
Mol Endocrinol.
2001;
15
136-148
- 45
Buckley A R, Buckley D J.
Prolactin regulation of apoptosis-associated gene expression in T cells.
Ann N Y Acad Sci.
2000;
917
522-533
Prof. A. C. Boschero
Departamento de Fisiologia e Biofísica · Instituto de Biologia · CP 6109 · Universidade
Estadual de Campinas (UNICAMP)
Campinas 13083-970 · SP · Brasil
Phone: 55 19 3788 6202
Fax: 55 19 3289 3124
Email: boschero@unicamp.br