Abstract
Several recent studies have suggested that control of isoprene emission rate is in
part exerted by supply of extrachloroplastic phosphoenolpyruvate to the chloroplast.
To test this hypothesis, we altered PEP supply by differential induction of cytosolic
nitrate reductase (NR) and PEP carboxylase (PEPC) in plants of Populus deltoides grown with NO3
- or NH4
+ as the sole nitrogen source. Growth with 8 mM NH4
+ produced a high leaf nitrogen concentration, compared with 8 mM NO3
-, as well as slightly elevated rates of photosynthesis and significantly enhanced
rates of isoprene emission and content of dimethylallyl diphosphate (DMAPP, a precursor
to isoprene biosynthesis), chlorophyll (a+b) and carotenoids. Growth with 8 mM NO3
- resulted in parallel reductions in both leaf isoprene emission rate and DMAPP. The
differential effects of growth with NH4
+ or NO3
- were not observed when plants were grown with 4 mM nitrogen. The effects of reduced
DMAPP availability were specific to isoprene emission and were not propagated to higher
isoprenoids, as the correlations between nitrogen content and either leaf chlorophyll
(a+b) or total carotenoids were unaffected by nitrogen source. Biochemical analysis
revealed significantly higher levels of NR and PEPC activity in leaves of 8 mM NO3
--grown plants, consistent with their fundamental roles in nitrate assimilation. Taken
together, these results support the hypothesis that foliar assimilation of NO3
- reduces isoprene emission rate by competing for carbon skeletons (mediated by PEPC)
within the cytosol and possibly reductant within the chloroplast. Cytosolic competition
for PEP is a major regulator of chloroplast DMAPP supply, and we offer a new “safety
valve” hypothesis to explain why plants emit isoprene.
Key words
VOC - volatile organic compound - photosynthesis - nitrate reductase - ammonium -
metabolism - isoprene.
References
- 1
Adams W. W. III., Demmig-Adams B..
Operation of the xanthophyll cycle in higher plants in response to diurnal changes
in incident sunlight.
Planta.
(1992);
186
390-398
- 2
Affek H. P., Yakir D..
Protection by isoprene against singlet oxygen in leaves.
Plant Physiol..
(2002);
129
269-277
- 73
Affek H. P., Yakir D..
Natural abundance carbon isotope composition of isoprene reflects incomplete coupling
between isoprene synthesis and photosynthetic carbon flow.
Plant Physiol..
(2003);
131
1727-1736
- 3
Black B. L., Fuchigami L. H., Coleman G. D..
Partitioning of nitrate assimilation among leaves, stems and roots of poplar.
Tree Physiol..
(2002);
22
717-724
- 4
Bloom A. J..
Ammonium and nitrate as nitrogen sources for plant growth. ISI Atlas of Science.
Animal and Plant Sciences.
(1988);
1
55-59
- 5
Bradford M. M..
A rapid and sensitive method for the quantification of microgram quantities of protein
utilizing the principle of protein-dye binding.
Analyt. Biochem..
(1976);
72
248-254
- 6
Brüggemann N., Schnitzler J. P..
Comparison of isoprene emission, intercellular isoprene concentration and photosynthetic
performance in water-limited oak (Quercus pubescens Willd. and Quercus robur L.) saplings.
Plant Biol..
(2002);
4
456-463
- 7
Champigny M. L., Brauer M., Bismuth E., ThiManh C., Siegl G., Van Quy L., Stitt M..
The short term effects of NO3
- and NH4
+ assimilation on sucrose synthesis in leaves.
J. Plant Physiol..
(1992);
139
361-368
- 8
Chapin F. S..
The mineral nutrition of wild plants.
Annu. Rev. Ecol. Syst..
(1980);
11
233-260
- 9
Delwiche C. F., Sharkey T. D..
Rapid appearance of 13C in biogenic isoprene when 13CO2 is fed to intact leaves.
Plant Cell Environ..
(1993);
16
587-591
- 10
Duff M. G., Chollet R..
In vivo regulation of wheat-leaf phosphoenolpyruvate carboxylase by reversible phosphorylation.
Plant Physiol..
(1995);
107
775-782
- 11
Fehsenfeld F. C., Calvert J., Fall R., Goldan P., Guenther A. B., Hewitt C. N., Lamb B.,
Liu S., Trainer M., Westberg H.. et al. .
Emissions of volatile organic compounds from vegetation and the implications for atmospheric
chemistry.
Global Biogeochem. Cycles.
(1992);
6
389-430
- 12
Fuentes J. D., Lerdau M., Atkinson R., Baldocchi D., Bottenheim J. W., Ciccioli P.,
Lamb B., Geron C., Gu L., Guenther A., Sharkey T. D., Stockwell W..
Biogenic hydrocarbons in the atmospheric boundary layer: a review.
Bulletin of the American Meteorological Society.
(2000);
81
1537-1575
- 13
Fisher A. J., Rosenstiel T. N., Shirk M. C., Fall R..
Nonradioactive assay for cellular dimethylallyl diphosphate.
Analyt. Biochem..
(2001);
292
272-279
- 14 Flügge U. I..
Metabolite transport across the chloroplast envelope of C3-plants. Leegood, R. C., Sharkey, T. D., and von Caemmerer, S., eds. Photosynthesis: Physiology
and Metabolism, Advances in Photosynthesis, Vol. 9. Dordrecht; Kluwer Academic Publishers
(2000): 137-152
- 15 Foyer C. H., Ferrario-Méry S., Huber S. C..
Regulation of carbon fluxes in the cytosol: coordination of sucrose synthesis, nitrate
reduction and organic acid and amino acid biosynthesis. Leegood, R. C., Sharkey, T. D., and von Caemmerer, S., eds. Photosynthesis: Physiology
and Metabolism, Advances in Photosynthesis, Vol. 9. Dordrecht; Kluwer Academic Publishers
(2000): 177-203
- 16
Foyer C. H., Noctor G., Lelandais M., Lescure J. C., Valadier M. H., Boutin J. P.,
Horton P..
Short-term effects of nitrate, nitrite and ammonium assimilation on photosynthesis,
carbon partitioning and protein phosphorylation in maize.
Plant Physiol..
(1994);
192
211-220
- 17
Foyer C. H., Ferrario S..
Modulation of carbon and nitrogen metabolism in transgenic plants with a view to improved
biomass production.
Biochem. Soc. Trans..
(1994);
22
909-915
- 18
Gilmore A. M., Yamamoto H. Y..
Resolution of lutein and zeaxanthin using a non-endcapped, lightly carbon-loaded C18
high-performance liquid chromatographic column.
J. of Chromatography.
(1991);
543
137-145
- 19
Glynn C., Herms D. A., Egawa M., Hansenn R., Mattson W. J..
Effects of nutrient availability on biomass allocation as well as constitutive and
rapid induced herbivore resistance in poplar.
Oikos.
(2003);
101
385-397
- 20
Harley P., Litvak M., Sharkey T., Monson R..
Isoprene emission from velvet bean leaves.
Plant Physiol..
(1994);
105
279-285
- 21
Harley P., Guenther A., Zimmerman P..
Effects of light, temperature and canopy position on net photosynthesis and isoprene
emission from sweetgum (Liquidambar styraciflua L.) leaves.
Tree Physiol..
(1996);
16
25-32
- 22
Harley P. C., Monson R. K., Lerdau M. T..
Ecological and evolutionary aspects of isoprene emission by plants.
Oecologia.
(1999);
118
109-123
- 23 Hills A. J., Fall R. R., Monson R. K..
Methods for the analysis of isoprene emission from leaves. Linskens, H. F. and Jackson, J. F., eds. Modern Methods of Plant Analysis, New Series,
Vol. 13, Plant Toxin Analysis. Berlin; Springer Verlag (1992): 297-315
- 24
Jaworski E. G..
Nitrate reductase assay in intact plant tissues.
Biochem. Biophys. Res. Commun..
(1971);
43
1274-1279
- 25
Kaiser W. M., Forster J..
Low CO2 prevents nitrate reduction in leaves.
Plant Physiol..
(1989);
91
970-974
- 26
Karl T., Fall R., Rosenstiel T. N., Prazeller P., Larsen B., Duane M., Seufert G.,
Lindinger W..
On-line analysis of the 13CO2 labeling of leaf isoprene suggests multiple subcellular origins of isoprene precursors.
Planta.
(2002);
215
894-905
- 27
Kreuzwieser J., Graus M., Wisthaler A., Hansel A., Rennenberg H., Schnitzler J. P..
Xylem-transported glucose as an additional carbon source for leaf isoprene formation
in Quercus robur.
.
New Phytol..
(2002);
156
171-178
- 28
Kronzucker H. J., Siddiqi M. Y., Glass M A. D..
Conifer root discrimination against soil nitrate and the ecology of forest succession.
Nature.
(1997);
385
59-61
- 29
Kuzma J., Fall R..
Leaf isoprene emission rate is dependent on leaf development and the level of isoprene
synthase.
Plant Physiol..
(1993);
101
435-440
- 30
Lehning A., Zimmer I., Steinbrecher R., Brüggemann N., Schnitzler J. P..
Isoprene synthase activity and its relation to isoprene emission in Quercus robur L-leaves.
Plant Cell Environ..
(1999);
22
495-504
- 31
Lichtenthaler H. K..
The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants.
Ann. Rev. Plant Physiol. Plant Mol. Biol..
(1999);
50
47-65
- 32
Litvak M. E., Loreto F., Harley P. C., Sharkey T. D., Monson R. K..
The response of isoprene emission rate and photosynthetic rate to photon flux and
nitrogen supply in aspen and white oak trees.
Plant Cell Environ..
(1996);
19
549-559
- 33
Logan B. A., Monson R. K..
Thermotolerance of leaf discs from four isoprene-emitting species is not enhanced
by exposure to exogenous isoprene.
Plant Physiol..
(1999);
120
821-825
- 34
Logan B. A., Anchodoquy T. J., Monson R. K., Pan R..
The effect of isoprene on the properties of spinach thylakoids and phosphatidylcholine
liposomes.
Plant Biol..
(1999);
1
602-606
- 35
Logan B. A., Monson R., Potosnak M..
Biochemistry and physiology of foliar isoprene production.
Trends in Plant Science.
(2000);
5
477-481
- 36
Loreto F., Sharkey T. D..
A gas exchange study of photosynthesis and isoprene emission in Quercus rubra L.
Planta.
(1990);
182
523-531
- 37
Loreto F., Delfine S..
Emission of isoprene from salt-stressed Eucalyptus globulus leaves.
Plant Physiol..
(2000);
123
1605-1610
- 38
Loreto F., Mannozzi M., Maris C., Nascetti P., Ferranti F., Pasqualini S..
Ozone quenching properties of isoprene and its antioxidant role in leaves.
Plant Physiol..
(2001);
126
993-1000
- 39
Miller B., Oschinski C., Zimmer W..
First isolation of an isoprene synthase gene from poplar and successful expression
of the gene in Escherichia coli.
.
Planta.
(2001);
213
483-487
- 40
Min X., Siddiqi M. Y., Guy R. D., Glass A. D. M., Kronzucker H. J..
Induction of nitrate uptake and nitrate reductase activity in trembling aspen and
lodgepole pine.
Plant Cell Environ..
(1998);
21
1039-1046
- 41
Min X., Siddiqi M. Y., Guy R. D., Glass A. D. M., Kronzucker H. J..
A comparative kinetic analysis of nitrate and ammonium influx in two early-successional
tree species of temperate and boreal forest ecosystems.
Plant Cell Environ..
(2000);
23
321-328
- 42
Molinas S. M., Altabe S. G., Opperdoes F. R., Rider M. H., Michels P. A. M., Uttaro A. D..
The multifunctional isopropyl alcohol dehydrogenase of Phytomonas sp. could be the result of a horizontal gene transfer from a bacterium to the trypanosomatid
lineage.
J. of Biol. Chem..
(2003);
278
36169-36175
- 43
Monson R. K., Fall R..
Isoprene emissions from aspen leaves. Influence of environment and relation to photosynthesis
and photorespiration.
Plant Physiol..
(1989);
90
267-274
- 44
Monson R. K., Jaeger C. H., Adams W. W. III., Driggers E. M., Silver G. M., Fall R..
Relationships among isoprene emission rate, photosynthesis, and isoprene synthase
activity as influenced by temperature.
Plant Physiol..
(1992);
98
1175-1180
- 45
Monson R. K., Harley P. C., Litvak M. E., Wildermuth M., Guenther A. B., Zimmermann P. R.,
Fall R..
Environmental and developmental controls over the seasonal pattern of isoprene emission
from aspen leaves.
Oecologia.
(1994);
9
260-270
- 46
Monson R. K., Holland E. A..
Biospheric trace gas fluxes and their control over tropospheric chemistry.
Ann. Rev. Ecol. Syst..
(2001);
32
547-576
- 47
Monson R. K..
Volatile organic compound emissions from terrestrial ecosystems: a primary biological
control over atmospheric chemistry.
Israel Journal of Chemistry.
(2002);
42
29-42
- 48 Nelson D. W., Sommers L. E..
Total carbon, organic carbon, and organic matter. Sumner, M. E., ed. Methods of Soil Analysis: Chemical Methods, Part 3. Madison, Wisconsin,
USA; Soil Science Society of America, Inc. (1996): 961-1010
- 49
Niinemets U., Tenhunen J., Harley P., Steinbrecher R..
A model of isoprene emission based on energetic requirements for isoprene synthesis
and lead photosynthetic properties for Liquidambar and Quercus.
.
Plant Cell and Environ..
(1999);
22
1319-1335
- 50
Niyogi K. K..
Safety valves for photosynthesis.
Curr Opinion Plant Biol.
(2000);
3
455-460
- 51
Peñuelas J., Llusià J..
Linking photorespiration, monoterpenes and thermotolerance in Quercus.
New Phytol..
(2002);
155
227-237
- 52
Raven J. A., Wollenweber B., Handley L. L..
A comparison of ammonium and nitrate as nitrogen sources for photolithotrophs.
New Phytol..
(1992);
121
19-32
- 53
Rosenstiel T. N., Fisher A. J., Fall R., Monson R. K..
Differential accumulation of dimethylallyl diphosphate in leaves and needles of isoprene-emitting,
methylbutenol-emitting, and non-emitting species.
Plant Physiol..
(2002);
129
1276-1284
- 54
Rosenstiel T. N., Potosnak M. J., Griffin K. L., Fall R., Monson R. K..
Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem.
Nature.
(2003);
421
256-259
- 55
Rothstein D. E., Zaj D. R., Pregitzer K. S., Curtis P. S..
Kinetics of nitrogen uptake by Populus tremuloides in relation to atmospheric CO2 and soil nitrogen availability.
Tree Physiol..
(2000);
20
265-270
- 56
Scheibe R..
Light-dark modulation regulation of chloroplast metabolism in a new light.
Bot Acta.
(1990);
103
327-334
- 57
Scheible W. R., Krapp A., Stitt M..
Reciprocal diurnal changes of phosphoenolpyruvate carboxylase expression and cytosolic
pyruvate kinase, citrate synthase and NADP-isocitrate dehydrogenase expression regulate
organic acid metabolism during nitrate assimilation in tobacco leaves.
Plant Cell and Environ..
(2000);
23
1155-1167
- 58
Schnitzler J. P., Arenz R., Steinbrecher R., Lehning A..
Characterization of an isoprene synthase from leaves of Quercus petraea (Mattuschka) Liebl.
Bot Acta.
(1996);
109
216-221
- 59
Schwender J., Zeidler J., Groner R., Müller C., Frocke M., Braun S., Lichtenthaler F. W.,
Lichtenthaler H. K..
Incorporation of 1-deoxy-D-xylulose into isoprene and phytol by higher plants and
algae.
FEBS Lett..
(1997);
414
129-134
- 60
Sharkey T., Singsaas E..
Why plants emit isoprene.
Nature.
(1995);
374
769
- 61
Sharkey T. D., Yeh S..
Isoprene emission from plants.
Ann. Rev. Plant Physiol. Plant Mol. Biol..
(2001);
52
407-436
- 62
Shen B., Hohmann S., Jensen R. G., Bohnert H. J..
Roles of sugar alcohols in osmotic stress adaptation: replacement of glycerol by mannitol
and sorbitol in yeast.
Plant Physiol..
(1999);
121
45-52
- 63
Shirk M. C., Wagner W. P., Fall R..
Isoprene formation in Bacillus subtilis: a barometer of central carbon assimilation in a bioreactor?.
Biotechnol. Prog..
(2002);
18
1109-1115
- 64
Siebrecht S., Tischner R..
Changes in the xylem exudates composition of poplar (Populus tremula × P. alba) dependent on the nitrogen and potassium supply.
J. Exp. Bot..
(1999);
50
1797-1806
- 65
Silver G. M., Fall R..
Enzymatic synthesis of isoprene from dimethylallyl diphosphate in aspen leaf extracts.
Plant Physiol..
(1991);
97
1588-1591
- 66
Silver G. M., Fall R..
Characterization of aspen isoprene synthase, an enzyme responsible for leaf isoprene
emission to the atmosphere.
J. Biol. Chem..
(1995);
270
13010-13016
- 67
Smith J. A. C., Raven J. A..
Intracellular pH and its regulation.
Ann. Rev. Plant Physiol..
(1979);
30
289-311
- 68
Stitt M., Muller C., Matt P., Gibon Y., Carillo P., Morcuende R., Scheible W. R.,
Krapp A..
Steps towards an integrated view of nitrogen metabolism.
J. of Exp. Bot..
(2002);
53
959-970
- 69
Traux B., Lambert F., Gagnon D., Chevrier N..
Nitrate reductase and glutamine synthetase activities in relation to growth and nitrogen
assimilation in red oak and red ash seedlings: effects of N-forms, N concentration
and light intensity.
Trees.
(1994);
9
12-18
- 70
Wolfertz M., Sharkey T. D., Boland W., Kühnemann F., Yeh S., Weise S. E..
Biochemical regulation of isoprene emission.
Plant Cell and Environ..
(2003);
26
1357-1364
- 71
Woolfolk W. T. M., Friend A. L..
Growth response of cottonwood roots to varied NH4:NO3 ratios in enriched patches.
Tree Physiol..
(2003);
23
427-432
- 72
Zimmer W., Brüggemann N., Emeis S., Giersch C., Lehning A., Steinbrecher R., Schnitzler J. P..
Process-based modelling of isoprene emission by oak leaves.
Plant Cell Environ..
(2000);
23
585-595
T. N. Rosenstiel
Department of Ecology and Evolutionary Biology
University of Colorado
Campus Box 334
Boulder, CO 80309
USA
Email: todd.rosenstiel@colorado.edu
Section Editor: H. Rennenberg