Abstract
A simple and facile preparation of chiral and bis-pyrroles is described here. This
method involves a modified Paal-Knorr reaction using 1,4-dicarbonyl systems derived
from ozonolysis of allylated β-ketoester.
Key words
Paal-Knorr synthesis - chiral and bispyrroles - ozonolysis - allylated β-ketoester
References
For recent reviews, see:
<A NAME="RM00604SS-1A">1a </A>
Reddy GM.
Bhavani AKD.
Reddy PP.
Reddy PSN.
Synthesis
2002,
1311
<A NAME="RM00604SS-1B">1b </A>
Ferreira VF.
de Souza MCBV.
Cunha AC.
Pereira LOR.
Ferreira MLG.
Organic Preparations and Procedures Int.
2001,
33:
411
<A NAME="RM00604SS-1C">1c </A>
Korostova SE.
Mikhaleva AI.
Vasil’tsov AM.
Trofimov BA.
Russ. J. Org. Chem.
1998,
34:
911
<A NAME="RM00604SS-1D">1d </A>
Korostova SE.
Mikhaleva AI.
Vasil’tsov AM.
Trofimov BA.
Russ. J. Org. Chem.
1998,
34:
1691
<A NAME="RM00604SS-2A">2a </A>
Tourillon G. In
Handbook of Conducting Polymers
Vol. 1:
Skotheim TA.
Dekker;
New York:
1986.
p.294-351
<A NAME="RM00604SS-2B">2b </A>
Street GB. In
Handbook of Conducting Polymers
Vol. 1:
Skotheim TA.
Dekker;
New York:
1986.
p.265-294
<A NAME="RM00604SS-3">3 </A> For a review on pyrrolizidines, see:
Yamashita T.
Yasuda K.
Kizu H.
Kameda Y.
Watson AA.
Nash RJ.
Fleet GWJ.
Asano N.
J. Nat. Prod.
2002,
45:
1875
For reviews on Knorr pyrrole synthesis, see:
<A NAME="RM00604SS-4A">4a </A>
Knorr L.
Chem. Ber.
1884,
17:
546
<A NAME="RM00604SS-4B">4b </A>
Knorr L.
Justus Liebig Ann. Chem.
1886,
236:
290
<A NAME="RM00604SS-4C">4c </A>
Davies DT. In
Aromatic Heterocyclic Chemistry
Oxford;
New York, NY:
1992.
p.10
<A NAME="RM00604SS-4D">4d </A>
Gilchrist TL. In
Heterocyclic Chemistry
John Wiley and Sons;
New York, NY:
1992.
p.188
For recent examples of Knorr pyrrole synthesis, see:
<A NAME="RM00604SS-5A">5a </A>
Calvo L.
González-Ortega A.
Sañudo MC.
Synthesis
2002,
2450
<A NAME="RM00604SS-5B">5b </A>
Danks TN.
Tetrahedron Lett.
1999,
40:
3957
<A NAME="RM00604SS-6">6 </A> For a review on Paal-Knorr pyrrole synthesis, see:
Katrizky AR. In
Handbook of Heterocyclic Chemistry
1st ed:
Pergamon Press;
New York, NY:
1985.
For recent examples of Paal-Knorr pyrrole synthesis, see:
<A NAME="RM00604SS-7A">7a </A>
Agami C.
Dechoux L.
Hamon L.
Hebbe S.
Synthesis
2003,
6:
859
<A NAME="RM00604SS-7B">7b </A>
Quiclet-Sire B.
Quintero L.
Sanchez-Jimenez G.
Zard SZ.
Synlett
2003,
75
<A NAME="RM00604SS-7C">7c </A>
Raghavan S.
Anuradha K.
Synlett
2003,
5:
711
<A NAME="RM00604SS-7D">7d </A>
Curini M.
Montanari F.
Rosati O.
Lioy E.
Margarita R.
Tetrahedron Lett.
2003,
44:
3923
<A NAME="RM00604SS-7E">7e </A>
Baxendale IR.
Brusotti G.
Matsuoka M.
Ley SV.
J. Chem. Soc., Perkin Trans. 1
2002,
143
<A NAME="RM00604SS-7F">7f </A>
Friedrich M.
Wächtler A.
de Meijere A.
Synlett
2002,
4:
619
<A NAME="RM00604SS-7G">7g </A>
Ferreira PMT.
Maia HLS.
Monteiro LS.
Tetrahedron Lett.
2002,
43:
4491
<A NAME="RM00604SS-7H">7h </A>
Hewton CE.
Kimber MC.
Taylor DK.
Tetrahedron Lett.
2002,
43:
3199
<A NAME="RM00604SS-7I">7i </A>
Braun RU.
Zeitler K.
Muller TJJ.
Org. Lett.
2001,
3:
3297
<A NAME="RM00604SS-7J">7j </A>
Rao HSP.
Jothilingam S.
Tetrahedron Lett.
2001,
42:
6595
<A NAME="RM00604SS-7K">7k </A>
Chen N.
Lu Y.
Gadamasetti K.
Hurt CR.
Norman MH.
Fotsch C.
J. Org. Chem.
2000,
65:
2603
<A NAME="RM00604SS-7L">7l </A>
Xu G.
Liu Y.
Sayre LM.
J. Org. Chem.
1999,
64:
5732
For Hantzsch pyrrole synthesis, see:
<A NAME="RM00604SS-8A">8a </A>
Hantzsch A.
Chem. Ber.
1890,
23:
1474
<A NAME="RM00604SS-8B">8b </A> A recent example, see:
Palacios F.
Aparicio D.
de los Santos JM.
Vicario J.
Tetrahedron
2001,
57:
1961
For recent preparations of chiral pyrroles, see:
<A NAME="RM00604SS-9A">9a </A>
Settambolo R.
Guazzelli G.
Mengali L.
Mandoli A.
Lazzaroni R.
Tetrahedron: Asymmetry
2003,
14:
2491
<A NAME="RM00604SS-9B">9b </A>
Wasserman HH.
Long YO.
Zhang R.
Carr AJ.
Parr J.
Tetrahedron Lett.
2002,
43:
3347
<A NAME="RM00604SS-9C">9c </A>
Ong CW.
Chen CM.
Wang LH.
Jan JJ.
J. Org. Chem.
1998,
63:
9131
<A NAME="RM00604SS-9D">9d </A>
Grigg R.
Yoganathan G.
Tetrahedron: Asymmetry
1996,
7:
273
For recent preparations of bispyrroles, see:
<A NAME="RM00604SS-10A">10a </A>
Bröring M.
Link S.
Synthesis
2002,
1:
67
<A NAME="RM00604SS-10B">10b </A>
Wasserman HH.
Long YO.
Zhang R.
Carr AJ.
Parr J.
Tetrahedron Lett.
2002,
43:
3347
<A NAME="RM00604SS-10C">10c </A>
Chacon-Garciá L.
Martinez R.
Eur. J. Med. Chem.
2002,
37:
261
<A NAME="RM00604SS-10D">10d </A>
Just PE.
Chane-Ching KI.
Lacaze PC.
Tetrahedron
2002,
58:
3467
<A NAME="RM00604SS-10E">10e </A>
Domingo VM.
Alemán C.
Brillas E.
Juliá L.
J. Org. Chem.
2001,
66:
4058
<A NAME="RM00604SS-10F">10f </A>
Attanasi OA.
Crescentini LD.
Filippone P.
Perrulli FR.
Santeusanio S.
Synlett
1999,
339
<A NAME="RM00604SS-10G">10g </A> For some earliest preparations of bispyrroles, see the following:
Buu-Hoï NP.
Xuong N.
J. Org. Chem.
1955,
20:
850
<A NAME="RM00604SS-10H">10h </A>
Adams R.
Joyce RM.
J. Am. Chem. Soc.
1938,
60:
1491
<A NAME="RM00604SS-10I">10i </A>
Chang C.
Joyce RM.
J. Am. Chem. Soc.
1934,
56:
2089
For recent examples on transition metal-mediated methods for the pyrrole synthesis,
see:
<A NAME="RM00604SS-11A">11a </A>
Gabriele B.
Salerno G.
Fazio A.
J. Org. Chem.
2003,
68:
7853
<A NAME="RM00604SS-11B">11b </A>
Zhang Y.
Herdon JW.
Org. Lett.
2003,
5:
2043
<A NAME="RM00604SS-11C">11c </A>
Nakano H.
Ishibashi T.
Sawada T.
Tetrahedron Lett.
2003,
44:
4175
<A NAME="RM00604SS-11D">11d </A>
Takaya H.
Kojima S.
Murahashi S.-I.
Org. Lett.
2001,
3:
421
<A NAME="RM00604SS-11E">11e </A>
Kel’in AV.
Sromek AW.
Gevorgyan V.
J. Am. Chem. Soc.
2001,
123:
2074
<A NAME="RM00604SS-11F">11f </A>
Farcas S.
Namy J.-L.
Tetrahedron
2001,
57:
4881
<A NAME="RM00604SS-11G">11g </A>
Gabriele B.
Salerno G.
Fazio A.
Bossio MR.
Tetrahedron Lett.
2001,
44:
1339
<A NAME="RM00604SS-11H">11h </A>
Lee C.-F.
Yang L.-M.
Hwu T.-Y.
Feng A.-S.
Tseng J.-C.
Luh T.-Y.
J. Am. Chem. Soc.
2000,
122:
4992
<A NAME="RM00604SS-11I">11i </A>
Grigg R.
Savic V.
Chem. Commun.
2000,
873
<A NAME="RM00604SS-11J">11j </A>
Dieter RK.
Yu H.
Org. Lett.
2000,
2:
2283
For other related preparations of pyrroles, see:
<A NAME="RM00604SS-12A">12a </A>
Ranu BC.
Dey SS.
Tetrahedron Lett.
2003,
44:
2865
<A NAME="RM00604SS-12B">12b </A>
Ranu BC.
Hajra A.
Tetrahedron
2001,
57:
4767
<A NAME="RM00604SS-12C">12c </A>
Lagu B.
Pan M.
Wachter MP.
Tetrahedron Lett.
2001,
42:
6027
<A NAME="RM00604SS-12D">12d </A>
Bullington JL.
Wolff RR.
Jackson PF.
J. Org. Chem.
2002,
67:
9439
<A NAME="RM00604SS-12E">12e </A>
Quiclet-Sire B.
Wendeborn F.
Zard SZ.
Chem. Commun.
2002,
2214
<A NAME="RM00604SS-12F">12f </A>
Aelterman W.
De Kimpe N.
Tyvorskii V.
Kulinkovich O.
J. Org. Chem.
2001,
66:
53-58
<A NAME="RM00604SS-12G">12g </A>
Katrizky AR.
Huang T.-B.
Voronkov MV.
Wang M.
Kolb H.
J. Org. Chem.
2000,
65:
8819
<A NAME="RM00604SS-12H">12h </A>
Simoni D.
Rondanin R.
Furnò G.
Aiello E.
Invidiata FP.
Tetrahedron Lett.
2000,
41:
2699
For some examples, see:
<A NAME="RM00604SS-13A">13a </A>
Molander GA.
Cameron KOJ.
J. Am. Chem. Soc.
1993,
115:
830
<A NAME="RM00604SS-13B">13b </A>
Amarnath V.
Amarnath K.
Valentine WM.
Eng MA.
Graham DG.
Chem. Res. Toxicol.
1995,
8:
234
<A NAME="RM00604SS-13C">13c </A>
Xu G.
Sayre LM.
Chem. Res. Toxicol.
1999,
12:
862
<A NAME="RM00604SS-14">14 </A>
Solvents such as MeOH, CH3 CN, THF, EtOAc, CH2 Cl2 , and toluene were screened with CH3 CN giving the highest yield and cleanest products as determined by LCMS. The reactions
were also run at r.t., 50 °C, and 80 °C to determine the optimal temperature. A variety
of acids such as aq HCl and aq H2 SO4 were screened in addition to p -TsOH.