Zusammenfassung
In der Übersichtsarbeit wurden die Molekularbasis und der aktuelle Wissensstand über
immuntherapeutische Strategien zur Vorbeugung und Behandlung der Alzheimer-Krankheit
(AD) dargestellt. Die AD gehört unter den molekularen Gesichtspunkten zur Gruppe der
konformationellen Erkrankungen. Nachdem die Studien in vitro demonstrierten, dass
die Konformation der Aβ-Peptide durch die Bindung von Antikörpern moduliert werden
kann, wurde dieser experimentelle Ansatz in Studien in vivo an transgenen Tieren geprüft,
wobei zur Induzierung der Antikörper überwiegend das Aβ42 -Peptid als Immunogen eingesetzt wurde. Es stellte sich heraus, dass die Immunisation
der jungen Tiere der Amyloidbildung und der begleitenden neuropathologischen Veränderungen
vorbeugen könnte. Bei älteren Tieren reduzierte die Immunisation die präexistierenden
neuropathologischen Läsionen. Anhand der tierpsychologischen Verfahren wurde festgestellt,
dass die Immunisation den Leistungsdefiziten bei den jüngeren transgenen Mäusen vorbeugen
kann. Bei den älteren Mäusen verbesserten sich nach Immunisation die Leistungen im
Bereich des Gedächtnisses und Verhaltens. Die in den Studien verwendeten Immunogene
induzierten eine T-Zellen-Immunantwort vom Typ TH 2. Die induzierten Antikörper gehörten überwiegend zu den Immunglobulin-Isotypen IgG1
und IgG2b. Die Stärke der Immunantwort hing vom Immunogentyp, Genotyp der transgenen
Tiere, von der Dosis des Immunogens, von den Verabreichungsintervallen und Verabreichungswegen
ab. Der Wirkmechanismus der Antikörper bei transgenen Tieren besteht in der Induzierung
der Veränderungen in der Konformation und Löslichkeit der Aβ-Peptide sowie in deren
Konzentrationssenkung in den peripheren Kompartimenten. Der Lymphozytenproliferationstest
unter Anwendung von Aβ-Peptiden und Milzzellen immunisierter Tiere zeigte, dass das
Vakzin die T-Zellen-Epitope stimulierte, die sich im Aβ-Peptid befinden. Bei einer
umfangreichen quantitativen morphologisch-histochemischen und molekular-analytischen
Untersuchung der Hirnschnitte von verschiedenen Genotypen der transgenen Tiere sowie
von nicht-transgenen Tieren konnten keine Anhaltspunkte für eine Autoimmunreaktion,
Komplementaktivierung oder Kreuzreaktion festgestellt werden. Histopathologische Untersuchung
anderer Organe, einschließlich der Nieren, erbrachte keine pathologischen Befunde.
Neuropathologische Untersuchung bei einer an AD erkrankten Patientin, die mit Vakzin
behandelt wurde, wies ähnliche Impfeffekte wie im Tierexperiment auf. Bei 5 % der
in eine klinische Studie eingeschlossenen Patienten, die das Vakzin mit dem Aβ42 -Peptid als Immunogen erhielten (AN1792), trat eine Meningoenzephalitis auf. Der kausale
Zusammenhang mit der Vakzinverabreichung kann nicht ausgeschlossen werden, da bei
transgenen Tieren eine vorübergehende Mikrogliaaktivierung gesehen wurde. Dennoch
weist die niedrige Häufigkeit der unerwünschten Wirkung auf eine mögliche Mitbeteiligung
der Risikofaktoren bei den behandelten Patienten hin, die z. Z. noch nicht definiert
werden können. Im Hinblick auf die rasanten Fortschritte im Bereich der Biotechnologie,
insbesondere der Vakzintechnologie, kann in absehbarer Zukunft die Entwicklung wirksamer
und sicherer Immunogene sowie neuer Impftechniken für die Immuntherapie der AD erwartet
werden.
Abstract
This review discusses the molecular basis and current status of immunotherapeutic
strategies for prevention and treatment of Alzheimer's disease (AD). From the molecular
view-point AD belongs to the group of conformational diseases. In-vitro studies demonstrated
that monoclonal antibodies could modulate the conformation of Aβ peptides with subsequent
inhibition of amyloid fibrils formation and aggregation. The efficacy of this approach
was then successfully proved in the murine models of AD using predominantly Aβ42 peptide as immunogen. Immunisation of the young animals essentially prevented the
development of β-amyloid plaques formation and of concomittant neuropathology. Treatment
of the older animals markedly reduced the pre-existing AD-like neuropathology. Immunisation
was capable of preventing cognitive deficits in the young transgenic animals and improve
the memory and behavioural disturbances in the older animals. Measurement of specific
murine immunoglobulines in Aβ-vaccinated mice demonstrated a predominant IgG1 and
IgG2b isotypes, suggesting a type 2 (TH 2) T-helper cell immune response, which drives humoral immunity. The intensity of
the immune response depended on transgenic animals genotype, dose, frequency and route
of immunogen administration. The mechanism of antibodies action in transgenic animals
consists of inducing conformational and solubility changes in Aβ peptides as well
as their peripheral sink. Lymphocyte proliferation assays using Aβ peptides and splenocytes
from vaccinated mice demonstrated that vaccine specifically stimulated T-cell epitopes
present within the Aβ-peptide. Extensive quantitative morphological, histochemical
and molecular analysis of brain tissue from several species of Aβ-immunised transgenic
and non-transgenic animals showed no evidence of autoimmune reaction, complement activation
or cross-reaction. No pathological changes were found in all other organs, including
the kidney. Neuropathologic examination in a patient treated with vaccine revealed
similar vaccination effects as in experimental animals. An aseptic meningo-encephalitis
was reported in 5 % of patients included in a clinical trial in which a vaccine containing
Aβ42 peptide (AN1792) was administered intramuscularly. The causal relationship to the
vaccine administration cannot be excluded since in transgenic mice a transient microglia
activation was seen. However, this relatively infrequent although severe adverse effect
points to a possible participation of some actually unknown risk factors in the treated
patients. With regard to the rapid progress in biotechnology, especially in the vaccines
technology, the development of efficacious and safe immunogens as well as of new vaccination
techniques for immuntherapy of AD can be expected in the next future.
Literatur
1
Citron M.
Alzheimer's disease: treatments in discovery and development.
Nature Neuroscience suppl.
2002;
5
1055-1057
2
Haas Ch.
New hope for Alzheimer's disease vaccine.
Nature Med.
2002;
8
1195-1196
3
Karkos J.
Alzheimer-Krankheit: Perspektiven ihrer Therapie.
DAZ.
1998;
138
47-54
4
Karkos J.
Recent approaches to the treatment of Alzheimer's disease.
Soc Clin Psychiat (Moscow).
2002;
12
86-89
5
Soto C.
Plaque busters: strategies to inhibit amyloid formation in Alzheimer's disease.
Mol Med Today.
1999;
5
343-350
6
Selkoe D J.
Alzheimer's disease results from the cerebral accumulation and cytotoxicity of amyloid-β-protein.
J Alzheimer's Dis.
2001;
3
75-81
7
Younkin S G.
The role of Aβ42 in Alzheimer's disease.
J Physiology (Paris).
1998;
92
289-292
8
Findeis M A.
Approaches to discovery and characterisation of inhibitors of amyloid β-peptide polymerisation.
Biochem Biophys Acta.
2000;
1502
76-84
9
Sigurdsson E M, Scholtzova H, Mehta P D, Frangione B, Wisniewski T.
Immunization with a Nontoxic/Nonfibrillar Amyloid-β Homologous Peptide Reduces Alzheimer's
Disease-Associated Pathology in Transgenic Mice.
Am J Pathol.
2001;
159
439-447
10
Solomon B, Koppel R, Hannan E, Katzaw T.
Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer's β-amyloid
peptide.
Proc Natl Acad Sci USA.
1996;
93
452-455
11
Solomon B.
Immunotherapeutic Strategies for Prevention and Treatment of Alzheimer's Disease.
DNA Cell Biol.
2001;
20
697-703
12
Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K,
Khan K, Kholodenko D, Lee M, Zhenmei L, Lieberburg I, Motter R, Mutter L, Soriano F,
Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P.
Immunization with amyloid-β attenuates Alzheimer's disease-like pathology in the PDAPP
mouse.
Nature.
1999;
400
173-177
13
Bard F, Cannon C, Barbour R, Burke R-L, Games D, Grajeda H, Guido T, Hu K, Huang J,
Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F,
Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T.
Peripherally administered antibodies against amyloid beta peptide enter the central
nervous system and reduce pathology in a mouse model of Alzheimer's disease.
Nature Med.
2000;
6
916-920
14
Morgan D, Diamond D M, Gottschall P E, Ugen K E, Dickey C, Hardy J, Duff K, Jantzen P,
DiCarlo G, Wilcock D, Connor K, Hatcher J, Hope C, Gordon M, Arendash G W.
Aβ-peptide vaccination prevent memory loss in an animal model of Alzheimer's disease.
Nature.
2000;
408
982-985
15
Janus C, Pearson J, McLaurin J, Mathews P M, Jiang Y, Schmidt S D, Azhar Chisti M,
Horne P, Heslin D, French J, Mount H TJ, Nixon R A, Mercken M, Bergeron C, Fraser P E,
St George-Hyslop P, Westaway D.
Aβ-peptide immunisation reduces behavioural impairment and plaques in a model of Alzheimer's
disease.
Nature.
2000;
408
979-982
16
Hock Ch, Konietzko U, Papassotiropoulos A, Wollmer A, Streffer J, von Rotz R C, Davey G,
Moritz E, Nitsch R M.
Generation of antibodies specific for β-amyloid by vaccination of patients with Alzheimer
disease.
Nature Med.
2002;
8
1270-1275
17
Steinberg D.
Companies halt first Alzheimer vaccine trial.
The Scientist.
2002;
16
24-26
18
Faria A MC, Weiner H L.
Oral tolerance: mechanisms and therapeutic applications.
Adv Immunol.
1999;
73
153-264
19
Bitar D M, Whitacre C C.
Suppression of experimental autoimmune encephalomyelitis by the oral administration
of myelin basic protein.
Cell Immunol.
1988;
112
364-370
20
Higgins P, Weiner H L.
Suppression of experimental autoimmune encephalomyelitis by oral administration of
myelin basic protein and its fragments.
J Immunol.
1988;
140
440-445
21
Metzler B, Wraith D C.
Inhibition of experimental autoimmune encephalomyelitis by inhalation but not oral
administration of the encephalitogenic peptide: Influence of MHC binding affinity.
Int Immunol.
1993;
5
1159-1165
22
Okumura S, McIntosh K, Drachman D B.
Oral administration of acetylcholine receptor: effects on experimental myasthenia
gravis.
Ann Neurol.
1994;
36
704-713
23
Daniel D, Wegmann D R.
Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration
of insulin peptide B-(9 - 23).
Proc Natl Acad Sci USA.
1996;
93
956-960
24
Staines N A, Harper N, Ward F J, Malmström V, Holmdahl R, Bansal S.
Mucosal tolerance and suppression of collagen-induced arthritis (CIA) induced by nasal
inhalation of synthetic peptide 184 - 198 of bovine type II collagen (CII) expressing
a dominant T cell epitope.
Clin Exp Immunol.
1996;
103
368-375
25
Hyman B T, Smith C, Buldyrev I, Whelan C, Brown H, Tang M-X, Mayeux R.
Autoantibodies to amyloid-β in Alzheimer's disease.
Ann Neurol.
2001;
49
808-810
26
Pawelec G, Adibzadeh M, Pohla H, Schaut K.
Immunosenescence: ageing of the immune system.
Immunol Today.
1995;
16
420-422
27
Thomas P J, Qu B-H, Pedersen P L.
Defective protein folding as a basis of human disease.
Trends Biochem Sci.
1995;
20
456-459
28
Anfinsen Ch B.
Principles that Govern the Folding of Protein Chains.
Science.
1973;
181
223-230
29
Carrell R W, Lomas D A.
Conformational disease.
Lancet.
1997;
350
134-138
30
Barrow C J, Zagorski M G.
Solution structures of β-peptide and its constituent fragments.
Science.
1991;
253
179-182
31
Hollosi M, Otvos L, Kaijtar J, Percell A, Lee V MY.
Is amyloid deposition in Alzheimer's disease preceded by an environment induced double
conformational transition?.
Peptide Res.
1989;
2
109-113
32
Sticht H, Bayer P, Willbold D, Dames S, Hilbich C, Beyreuther K, Frank R W, Rösch P.
Structure of amyloid A4-(1 - 40)-peptide of Alzheimer's disease.
Eur J Biochem.
1995;
233
293-298
33
Barrow C J, Yasuda A, Kenny P T, Zagorski M G.
Solution conformations and aggregational properties of synthetic amyloid beta-peptides
of Alzheimer's disease.
J Mol Biol.
1992;
225
1075-1093
34
Soto C, Castaño E M.
The conformation of Alzheimer's β-peptide determines the rate of amyloid formation.
Biochem J.
1996;
314
701-707
35
Maggio J E, Stimson E R, Ghilardi J R, Allen C J, Dahl C E, Whitcomb D C, Vigna S R,
Vinters H V, Labensky M E, Mantyh P W.
Reversible in vitro growth of Alzheimer disease β-amyloid plaques by deposition of
labeled amyloid peptide.
Proc Natl Acad Sci USA.
1992;
89
5462-5466
36
Jarret J T, Lansbury Jr P T.
Seeding „one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer's
disease and scrapie?.
Cell.
1993;
73
1055-1058
37
Soto C, Sigurdsson E M, Morelli L, Kumar R A, Castaño E M, Frangione B.
β-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis.
Nature Med.
1998;
4
822-826
38
Maggio J E, Mantyh P W.
Brain amyloid - A physicochemical perspective.
Brain Pathol.
1996;
6
147-162
39
Mucke L, Masliah E, Yu G-Q, Mallory M, Rockstein E M, Tatsuno G, Hu K, Kholodenko D,
Johnson-Wood K, McConlogue L.
High Level Neuronal Expression of Abeta1 - 42 in Wild-Type Human Amyloid Precursor
Protein Transgenic Mice: Synaptotoxicity without Plaque Formation.
J Neurosci.
2000;
20
4050-4058
40
Van Gool W A, Kuiper M A, Walstra G JM, Wolters E CH, Bolhuis P A.
Concentrations of amyloid β-protein in cerebrospinal fluid of patients with Alzheimer's
disease.
Ann Neurol.
1994;
37
277-279
41
Esler W P, Stimson E R, Jennings J M, Ghilardi J R, Mantyh P W, Maggio J E.
Zinc-induced aggregation of human and rat β-amyloid peptides in vitro.
J Neurochem.
1996;
66
723-732
42
Mantyh P W, Ghilardi J R, Rogers S, DeMaster E, Allen C J, Stimson E R, Maggio J E.
Aluminium, iron and zinc ions promote aggregation of physiological concentrations
of β-amyloid peptide.
J Neurochem.
1993;
61
1171-1174
43
Evans K C, Berger E P, Cho C-G, Weisgraber K H, Lansbury Jr P T.
Apolipoprotein E is kinetic but not a thermodynamic inhibitor of amyloid formation:
Implications for the pathogenesis and treatment of Alzheimer disease.
Proc Natl Acad Sci USA.
1995;
92
763-767
44
Ma J, Yee A, Brewer Jr H B, Das S, Potter H.
Amyloid-associated protein a1 -antichymotrypsin and apolipoprotein E promote assembly of Alzheimer β-protein into
filaments.
Nature.
1994;
372
92-94
45
Halverson K, Fraser P E, Kirschner D A, Lansbury Jr P T.
Molecular determinants of amyloid deposition in Alzheimer's disease: Conformational
studies of synthetic β-protein fragments.
Biochemistry.
1990;
29
2639-2644
46
Jarret J T, Costa P R, Griffin R G, Lansbury Jr P T.
Models of the β-protein C-terminus: Differences in amyloid structure may lead to segregation
of „long” and „short” fibrils.
J Am Chem Soc.
1993;
116
9741-9742
47
Lue L-F, Kuo Y-M, Roher A E.
Soluble amyloid β-peptide concentration as a predictor of synaptic change in Alzheimer's
disease.
Am J Pathol.
1999;
155
853-862
48
McLean C A, Cherny R A, Fraser F W, Fuller S J, Smith M J, Beyreuther K, Bush A I,
Masters C L.
Soluble pool of Aβ-amyloid as a determinant of severity of neurodegeneration in Alzheimer's
disease.
Ann Neurol.
1999;
46
860-866
49
Näslund J, Haroutunian V, Mohs R, Davis P, Greengard P, Buxbaum J D.
Correlation Between Elevated Levels of Amyloid β-Peptide in the Brain and Cognitive
Decline.
JAMA.
2000;
283
1571-1577
50
Wang J, Dickson D W, Trojanowski J Q, Lee V M-Y.
The Levels of Soluble versus Insoluble Brain Aβ Distinguish Alzheimer's Disease from
Normal and Pathologic Aging.
Exp Neurol.
1999;
158
328-337
51
Karplus M, Petsko G A.
Molecular dynamics simulations in biology.
Nature.
1990;
347
631-639
52
Katzav-Gozansky T, Hanan E, Solomon B.
Effect of monoclonal antibodies in preventing carboxypeptidase A aggregation.
Biotechnol Appl Biochem.
1996;
23
227-230
53
Carlson J D, Yarmush M L.
Antibody assisted protein refolding.
Biotechnology.
1992;
10
86-91
54
Kelly J W.
Alternative conformations of amyloidogenic proteins govern their behavior.
Curr Opin Struct Biol.
1996;
6
11-17
55
Solomon B, Schwartz F.
Chaperone-like effect of monoclonal antibodies on refolding of heat-denaturated carboxypeptidase
A.
J Mol Recog.
1995;
8
72-76
56
Frenkel D, Solomon B, Benhar I.
Modulation of Alzheimer's beta-amyloid neurotoxicity by site-directed single-chain
antibody.
J Neuroimmunol.
2000;
106
23-31
57
Solomon B, Koppel R, Frenkel D, Hanan-Aharon E.
Disaggregation of Alzheimer β-amyloid by site-directed mAb.
Proc Natl Acad Sci USA.
1997;
94
4109-4112
58
Hoogenboom H R, De Bruine A P, Hufton S E, Hoet R M, Arends J W, Roovers R C.
Antibody phage display technology and its applications.
Immunotechnology.
1998;
4
1-20
59
Frenkel D, Balass M, Kachalsky-Katzir E, Solomon B.
High affinity binding of monoclonal antibodies to the sequential epitope EFRH of β-amyloid
peptide is essential for modulation in fibrillar aggregation.
J Neuroimmunol.
1999;
95
136-142
60
Frenkel D, Kariv N, Solomon B.
Generation of auto-antibodies towards Alzheimer's disease vaccination.
Vaccine.
2001;
19
2615-2619
61
Frenkel D, Balass M, Solomon B.
N-Terminal EFRH sequence of Alzheimer's β-amyloid peptide represents the epitope of
its anti-aggregating antibodies.
J Neuroimmunol.
1998;
88
85-90
62
Frenkel D, Katz O, Solomon B.
Immunization against Alzheimer's β-amyloid plaques via EFRH phage administration.
Proc Natl Acad Sci USA.
2000;
97
11 455-11 459
63
Games D, Adams D, Alessandrini R, Barbour R, Berthelette R, Blackwell C, Carr T, Clemens J,
Donaldson T, Gillespie R, Guido T, Hagopian S, Johnson-Wood K, Khan K, Lee M, Leibowitz P,
Lieberburg I, Little S, Masliah E, McConlogue L, Montoyazavalla M, Mucke L, Paganini L,
Peniman E, Power M, Schenk D, Seubert P, Snyder B, Soriano R, Tan H, Vitale J, Wadsworth S,
Wolozin B, Zhao O.
Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor
protein.
Nature.
1995;
373
523-527
64
Vehmas A K, Borchelt D R, Price D L, McCarthy D, Wills-Karp M, Peper M J, Rudow G,
Luyinbazi J, Siew L T, Troncoso J C.
β-Amyloid Peptide Vaccination Results in Marked Changes in Serum and Brain Aβ Levels
in APPswe/PS1 ΔE9 Mice, as Detected by SELDI-TOF-Based ProteinChip®-Technology.
DNA Cell Biol.
2001;
20
713-721
65
Weiner H L, Lemere C A, Maron R, Spooner E T, Grenfell T J, Mori C, Issazadeh S, Hancock W W,
Selkoe D J.
Nasal administration of amyloid-β peptide decreases cerebral amyloid burden in a mouse
model of Alzheimer's disease.
Ann Neurol.
2000;
48
567-579
66
George-Hyslop P St, Westway A.
Antibody clears senile plaques.
Nature.
1999;
400
116-117
67
Dickey C A, Morgan D G, Kudchodkar S, Weiner D B, Bai Y, Cao C, Gordon M N, Ugen K E.
Duration and Specificity of Humoral Immune Responses in Mice Vaccinated with the Alzheimer's
Disease-Associated β-Amyloid 1 - 42 Peptide.
DNA Cell Biol.
2001;
20
723-729
68
Wilcock D M, Gordon M N, Ugen K E, Gottschall P E, Dicarlo G, Dickey C, Boyett K W,
Jantzten P T, Connor K E, Melachrino J, Hardy J, Morgan D.
Number of Aβ Inoculation in APP+PS1 Transgenic Mice Influences Antibody Titers, Microglial
Activation, and Congophilic Plaque Levels.
DNA Cell Biol.
2001;
20
731-736
69
Johnstone E M, Chaney M O, Norris F H, Pascual R, Little S P.
Conservation of the sequence of the Alzheimer's disease amyloid peptide in dog, polar
bear and five other mammals by cross-species polymerase chain reaction analysis.
Mol Brain Res.
1991;
10
299-305
70
Kawarabayashi T, Younkin L H, Saido T C, Shoji M, Ashe K H, Younkin S G.
Age-dependent changes in brain, CSF, and plasma amyloid-β-protein in the Tg2576 transgenic
mouse model of Alzheimer's disease.
J Neurosci.
2001;
21
372-381
71
Lee V M-Y.
Aβ-immunisation: Moving Aβ-peptide from brain to blood.
Proc Natl Acad Sci USA.
2001;
98
8931-8932
72
Matsuoka Y, Saito M, LaFrancois J, Saito M, Gaynor K, Olm V, Wang L, Casey E, Lu Y,
Shiratori C, Lemere C, Duff K.
Novel Therapeutic Approach for the Treatment of Alzheimer's disease by Peripheral
Administration of Agents with an Affinity to β-Amyloid.
J Neurosci.
2003;
23
29-33
73
Lemere C A, Maron R, Selkoe D J, Weiner H L.
Nasal Vaccination with β-Amyloid Peptide for the Treatment of Alzheimer's Disease.
DNA Cell Biol.
2001;
20
705-711
74 Siegrist C-A, Lambert P-H. Antigen-Presentation Systems, Immunomodulators, and
Immune Responses to Vaccines. In: Perlmann P, Wigzell H (Hrsg). Handbook of Experimental
Pharmacology. Berlin-Heildelberg: Springer 1999: 57-92
75
McLaurin J, Cecal R, Kierstead M E, Tian X, Phinney A L, Manea M, French J E, Lamberon M HL,
Darabie A A, Brown M E, Janus C, Chishti M A, Horne P, Westaway D, Frase P E, Mount H TJ,
Przybylski M, St George-Hyslop P.
Therapeutically effective antibodies against amyloid-β peptide target amyloid-β residues
4 - 10 and inhibit cytotoxicity and fibrillogenesis.
Nature Med.
2002;
8
1263-1269
76
DeMattos R B, Bales K R, Cummins D J, Dodart J-C, Paul S M, Holtzman D M.
Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain
Aβ burden in a mouse model of Alzheimer's disease.
Proc Natl Acad Sci.
2001;
98
8850-8855
77
DeMattos R B, Bales K R, Cummins D J, Paul S M, Holtzman D M.
Brain to plasma amyloid-β efflux: A measure of brain amyloid burden in a mouse model
of Alzheimer's disease.
Science.
2002;
295
2264-2267
78
Thomson E J, Keir G.
Laboratory investigation of cerebral fluid proteins.
Ann Clin Biochem.
1990;
27
425-435
79
Steinberg D.
Testing Potential Alzheimer Vaccines.
The Scientist.
2002;
16
23-24
80
Nicoll J AR, Wilkinson D, Holmes C, Steart Phil, Markham H, Weller R O.
Neuropathology of human Alzheimer disease after immunization with amyloid-β-peptide:
a case report.
Nature Med.
2003;
9
448-452
81
Okamoto I, Kawano Y, Murakami D, Sasayama T, Araki N, Miki T, Wong A J, Saya H.
Proteolytic release of CD44 intracellular domain and its role in the CD44 signaling
pathway.
J Cell Biol.
2001;
155
755-762
82
Wyss-Coray T, Lin C, Yan F, Yu G-Q, Rohde M, McConlogue L, Masliah E, Mucke L.
TGF-β1 promotes microglial amyloid-β clearance and reduces plaque burden in transgenic
mice.
Nature Med.
2001;
7
612-618
83
Weggen S, Eriksen J L, Das P, Sagi S A, Wang R, Pietrzik C U, Finflay K A, Smith T E,
Murphy M P, Bulter T, Kang D E, Marquez-Sterling N, Golob T E, Koo E H.
A subset of NSAIDs lower amyloidogenic Aβ 42 independently of cyclooxygenase activity.
Nature.
2001;
414
212-216
84
Kensil C R.
Saponins as vaccine adjuvans.
Crit Rev Ther Drug Carrier Syst.
1996;
13
1-55
85
Wu J Y, Gardner B H, Murphy C I, Seals J R, Kensil C R, Recchia J, Beltz G A, Newman G W,
Newman M J.
Saponin adjuvant enhancement of antigen-specific immune responses to an experimental
HIV-1 vaccine.
J Immunol.
1992;
148
1519-1525
86
Birmingham K, Frantz S.
Set back to Alzheimer vaccine studies.
Nature Med.
2002;
8
199-200
87
Bush A I.
Therapeutic targets in the biology of Alzheimer's disease.
Cur Opin Psychiat.
2001;
14
341-348
88
Check E.
Nerve inflammation halts trial for Alzheimer's drug.
Nature.
2002;
415
462
89
Eastwood R, Förstl H.
The Vanishing Plaque. AN-1792: A Frank Revolution?.
International Psychogeriatrics.
2001;
13
3-4
90
Golde T E.
Inflammation takes on Alzheimer disease.
Nature Med.
2002;
8
936-938
91
Levey A I.
Immunization for Alzheimer's disease: A Shot in the Arm or a Whiff?.
Ann Neurol.
2000;
48
553-555
92
Münch G, Robinson S R.
Alzheimer's vaccine: a cure as dangerous as the disease?.
J Neural Transm.
2002;
109
537-539
93
Smith M A, Joseph J A, Atwood C S, Perry G.
Dangers of the amyloid-β vaccination.
Acta Neuropathol.
2002;
104
110
94
Smith M A, Atwood C S, Joseph J A, Perry G.
Predicting the failure of amyloid-β vaccine.
The Lancet.
2002;
359
1864-1865
95
Poland G A, Murray D, Bonilla-Guerrero R.
New vaccine development.
BMJ.
2002;
324
1315-1319
96 Schild G, Corbel M, Corran P, Minor P. Vaccines: Past, Present und Future. In:
Perlmann P, Wigzell H (Hrsg). Handbook of Experimental Pharmacology. Berlin-Heildelberg:
Springer 1999: 1-19
97
Hudson P J, Souriau C.
Engineered antibodies.
Nature Med.
2003;
9
129-134
98
Bergmann J, Kienzl E, Janetzky B, Preddie E, Jellinger K A.
Alternatives to the suspended Alzheimer's disease vaccine.
Acta Neuropathol.
2002;
104
111-112
99
Felician O, Sandson T A.
The Neurobiology and Pharmacotherapy of Alzheimer's Disease.
J Neuropsychiatry Clin Neurosci.
1999;
11
19-31
100
Irizarry M C, Hyman B T.
Alzheimer Disease Therapeutics.
J Neuropathol Exp Neurol.
2001;
60
923-928
Prof. Dr. med. Josef Karkos
Wenckebachstr. 10
12099 Berlin
Email: j.karkos@berlin.de