Synlett 2004(12): 2224-2226  
DOI: 10.1055/s-2004-831339
LETTER
© Georg Thieme Verlag Stuttgart · New York

KF-Alumina-Mediated Selective Double Michael Additions of Aryl Methyl Ketones: A Facile Entry to the Synthesis of Functionalized Pimelate Esters and Derivatives

Basudeb Basu*, Pralay Das, Ismail Hossain
Department of Chemistry, North Bengal University, Darjeeling 734 430, India
e-Mail: basu_nbu@indiatimes.com;
Further Information

Publication History

Received 17 May 2004
Publication Date:
03 September 2004 (online)

Abstract

Here we describe simple and efficient double Michael additions of aromatic and aliphatic methyl ketones to electron deficient alkenes promoted on a surface of KF-alumina. This one-pot procedure provides an easy access to a host of functionalized pimelate esters, which can be subsequently converted in to 3-acylcyclohexanones.

    References

  • 1a Bergman ED. Ginsburg D. Pappo R. Org. React.  1959,  10:  179 
  • 1b Oare DA. Heathcock CH. J. Org. Chem.  1990,  55:  157 
  • 1c Perlmutter P. Conjugate Addition Reaction in Organic Synthesis   Tetrahedron Organic Chemistry Series 9, Pergamon Press; Oxford: 1992. 
  • 2a Oare DA. Heathcock CH. In Topics in Stereochemistry   Vol. 19:  Eliel EL. Wilen SH. John Wiley and Sons; New York: 1989.  p.277 
  • 2b d’Angelo J. Revial G. Costa PRR. Castro RN. Antunes OAC. Tetrahedron: Asymmetry  1991,  2:  199 
  • 2c List B. Pojarliev P. Martin HJ. Org. Lett.  2001,  3:  2423 
  • 2d Alexakis A. Andrey O. Org. Lett.  2002,  4:  3611 
  • 3 Smith MB. March J. March’s Advanced Organic Chemistry   5th ed.:  John Wiley and Sons; New York: 2001.  p.1022 
  • 4a Bhardwaj CL. Ireson JC. Lee JB. Tyler MJ. Tetrahedron  1977,  33:  3279 
  • 4b Giardini A. Lesma G. Passarella D. Perez M. Silvani A. Synlett  2001,  132 
  • 4c Hughes F. Grossman RB. Org. Lett.  2001,  3:  2911 
  • 5a Bergbreiter DE. Lalonde JJ. J. Org. Chem.  1987,  52:  1601 
  • 5b Ranu BC. Bhar S. Tetrahedron  1992,  48:  1327 
  • 6a Irie H. Mizuno Y. Taga T. Osaki K. J. Chem. Soc., Perkin Trans. 1  1982,  25 
  • 6b Clark JH. Cork DG. Robertson MS. Chem. Lett.  1983,  1145 
  • 6c Yamawaki J. Kawate T. Ando T. Hanafusa T. Bull. Chem. Soc. Jpn.  1983,  56:  1885 
  • 7 Forrester AR. Irikawa H. Thomson RH. Woo SO. King TJ. J. Chem. Soc., Perkin Trans. 1  1981,  1712 
  • 8a Basu B. Jha S. Mridha NK. Bhuiyan MMH. Tetrahedron Lett.  2002,  43:  7967 
  • 8b Basu B. Das P. Bhuiyan MMH. Jha S. Tetrahedron Lett.  2003,  44:  3817 
  • 10a Villemin D. Ricard M. Tetrahedron Lett.  1984,  25:  1059 
  • 10b Loupy A. Petit A. Hamelin J. Texier-Boullet F. Jacquault P. Mathe D. Synthesis  1998,  1213 
  • For reviews see:
  • 11a Ihara M. Fukumoto K. Angew. Chem., Int. Ed. Engl.  1993,  32:  1010 
  • 11b Grossman RB. Synlett  2001,  13 
  • 12 Schaefer JP. Bloomfield JJ. Org. React.  1967,  15:  1 
9

Representative Experimental Procedure: A mixture of 4-methoxyacetophenone (300 mg, 2 mmol) and ethyl acrylate (600 mg, 6 mmol) was added in one portion to dry preformed KF-alumina (2 g) and the solid mixture was stirred at 60 °C for 10 h. TLC was checked and the mixture was packed on a column of silica gel and eluted with petroleum ether-EtOAc (9:1) to afford diethyl (4-methoxybenzoyl) heptanedioate as colorless viscous oil (553 mg, 79%). IR (neat): 1735, 1680, 1588 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.22 (t, 6 H, J = 7.1 Hz, 2 OCH2CH 3 ), 1.80-1.88 (m, 2 H, 2 CHCH2CO), 2.05-2.12 (m, 2 H, 2 CHCH2CO), 2.19-2.41 (m, 4 H, 2 CH2CH 2CO), 3.56-3.63 (m, 1 H, COCHCH2), 3.87 (s, 3 H, OCH 3 ), 4.10 (q, 4 H, J = 7.1 Hz, 2 OCH 2 CH3), 6.95 (d, 2 H, J = 8.8 Hz, ArH), 7.99 (d, 2 H, J = 8.8 Hz, ArH). 13C NMR (75 MHz, CDCl3): δ = 14.0, 26.9, 31.5, 43.2, 55.3, 60.2, 113.8, 129.9, 130.6, 163.6, 172.9, 201.2.