For most cells the nucleus takes center stage. Not only is it the largest organelle
in eukaryotic cells, it carries most of the genome and transcription of DNA to RNA
largely takes place in the nucleus. Because transcription is a major step in gene
regulation, the absence of a nucleus is limiting from a biosynthetic standpoint. Consequently,
the anucleate status of platelets has stereotyped it as a cell without synthetic potential.
It is now clear, however, that this viewpoint is far too simplistic. In response to
physiologic stimuli, platelets synthesize biologically relevant proteins that are
regulated via gene expression programs at the translational level. This process does
not require a nucleus; instead, it uses mRNAs and other translational factors that
appear to be retained in specialized fashion as megakaryocytes generate platelets
during thrombopoiesis. We highlight the molecular machinery and pathways used by platelets
to translate mRNA into protein and offer insight into how these synthesized products
may regulate thrombotic and inflammatory events.
KEYWORDS
Megakaryocytes - nucleus - platelets - RNA - translation
REFERENCES
1 Batar P AD. GL. Platelet turnover and aging. In: Michelson AD Platelets. San Diego,
CA; Elsevier Science 2002: 53-64
2 Woulfe D, Yang J, Prevost N, O'Brien P J, Brass L. Signal transduction during the
initiation, extension, and perpetuation of platelet plug formation. In: Michelson
AD Platelets. San Diego, CA; Elsevier Science 2002: 197-213
3
Weyrich A S, Lindemann S, Zimmerman G A.
The evolving role of platelets in inflammation.
J Thromb Haemost.
2003;
2
1-9
4
Parise L V.
Integrin alpha(IIb)beta(3) signaling in platelet adhesion and aggregation.
Curr Opin Cell Biol.
1999;
11
597-601
5 Reed G L. Platelet secretion. In: Michelson AD Platelets. San Diego, CA; Elsevier
Science 2002: 181-195
6
Italiano Jr J E, Shivdasani R A.
Megakaryocytes and beyond: the birth of platelets.
J Thromb Haemost.
2003;
1
1174-1182
7 Italiano Jr J, Hartwig J H. Megakaryocyte development and platelet formation. In:
Michelson AD Platelets. San Diego, CA; Elsevier 2002: 21-35
8
Weyrich A S, Zimmerman G A.
Evaluating the relevance of the platelet transcriptome.
Blood.
2003;
102
1550-1551
9
Gnatenko D V, Dunn J J, McCorkle S R, Weissmann D, Perrotta P L, Bahou W F.
Transcript profiling of human platelets using microarray and serial analysis of gene
expression.
Blood.
2003;
101
2285-2293
10 Mathews M B, Sonenberg N, Hershey J WB. Origins and principles of translational
control. In: Mathews MB, Sonenberg N, Hershey JWB Translational Control of Gene Expression. Cold
Spring Harbor, NY; Cold Spring Harbor Laboratory Press 2000: 1-31
11 Lindemann S, McIntyre T M, Prescott S M, Zimmerman G A, Weyrich A S. Expanding
the functional repertoire of platelets in thrombosis and inflammation: signal-dependent
protein synthesis. In: Fitzgerald DJ, Quinn MA Platelet Function: Assessment, Diagnosis,
and Treatment. Totowa, NJ; The Humana Press 2003
12
Lindemann S, Tolley N D, Dixon D A et al..
Activated platelets mediate inflammatory signaling by regulated interleukin 1beta
synthesis.
J Cell Biol.
2001;
154
485-490
13
Lindemann S, Tolley N D, Eyre J R, Kraiss L W, Mahoney T M, Weyrich A S.
Integrins regulate the intracellular distribution of eukaryotic initiation factor
4E in platelets. A checkpoint for translational control.
J Biol Chem.
2001;
276
33947-33951
14
Pabla R, Weyrich A S, Dixon D A et al..
Integrin-dependent control of translation: Engagement of integrin αIIb β3 regulates synthesis of proteins in activated human platelets.
J Cell Biol.
1999;
144
175-184
15
Weyrich A S, Dixon D A, Pabla R et al..
Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets.
Proc Natl Acad Sci USA.
1998;
95
5556-5561
16
Kraiss L W, Weyrich A S, Alto N M et al..
Fluid flow activates a regulator of translation, p70/p85 s6 kinase, in human endothelial
cells.
Am J Physiol Heart Circ Physiol.
2000;
278
1537-1544
17
Mahoney T S, Weyrich A S, Dixon D A, McIntyre T, Prescott S M, Zimmerman G A.
Cell adhesion regulates gene expression at translational checkpoints in human myeloid
leukocytes.
Proc Natl Acad Sci USA.
2001;
98
10284-10289
18 Booyse F M, Rafelson M E. Protein synthesis and platelet function. In: Johnson
SA, Guest M Dynamics of thrombus formation and dissolution. Philadelphia, PA; JB Lippincott
1969: 149
19
Booyse F M, Hoveke T P, Rafelson M E.
Studies on human platelets. II. Protein synthetic activity of various platelet populations.
Biochim Biophys Acta.
1968;
157
660-663
20
Booyse F M, Rafelson Jr M E.
Studies on human platelets. I. Synthesis of platelet protein in a cell-free system.
Biochim Biophys Acta.
1968;
166
689-697
21
Booyse F, Rafelson Jr M E.
In vitro incorporation of amino-acids into the contractile protein of human blood
platelets.
Nature.
1967;
215
283-284
22
Roth G J, Hickey M J, Chung D W, Hickstein D D.
Circulating human blood platelets retain appreciable amounts of poly (a)+ RNA.
Biochem Biophys Res Commun.
1989;
160
705-710
23 Hershey J WB, Merrick W. The pathway and mechanism of initiation of protein synthesis. In:
Sonenberg N, Hershey JWB, Mathews MB Translational Control of Gene Expression. Cold
Spring Harbor, NY; Cold Spring Harbor Laboratory Press 2000: 33-88
24
Rosenwald I B, Pechet L, Han A et al..
Expression of translation initiation factors eIF-4E and eIF-2α and a potential physiologic
role of continuous protein synthesis in human platelets.
Thromb Haemost.
2001;
85
142-151
25
Richter J D.
Cytoplasmic polyadenylation in development and beyond.
Microbiol Mol Biol Rev.
1999;
63
446-456
26 Jacobson A. Poly(A) metabolism and translation: the closed loop model. In: Hershey
JWB, Mathews MB, Sonenberg N Translational Control. Cold Spring Harbor, NY; Cold Spring
Harbor Laboratory Press 1996: 451-480
27 Sachs A. Physical and functional interactions between the mRNA cap structure and
the poly(a) tail. In: Sonenberg N, Hershey JWB, Mathews MB Translational Control of
Gene Expression. Cold Spring Harbor, NY; Cold Spring Harbor Laboratory Press 2000:
447-465
28
Sottile J, Mosher D F, Fullenweider J, George J N.
Human platelets contain mRNA transcripts for platelet factor 4 and actin.
Thromb Haemost.
1989;
62
1100-1102
29
Dixon D A, Tolley N D, Zimmerman G A.
Convenient and rapid ribonuclease protection assay for use with primary cell cultures.
Biotechniques.
2001;
31
992-993
30
Kochetov A V, Ischenko I V, Vorobiev D G et al..
Eukaryotic mRNAs encoding abundant and scarce proteins are statistically dissimilar
in many structural features.
FEBS Lett.
1998;
440
351-355
31
Papkoff J, Chen R H, Blenis J, Forsman J.
P42 mitogen-activated protein kinase and p90 ribosomal S6 kinase are selectively phosphorylated
and activated during thrombin-induced platelet activation and aggregation.
Mol Cell Biol.
1994;
14
463-472
32
Nguyen Y H, Mills A A, Stanbridge E J.
Assembly of the QM protein onto the 60S ribosomal subunit occurs in the cytoplasm.
J Cell Biochem.
1998;
68
281-285
33
Kieffer N, Guichard J, Farcet J P, Vainchenker W, Breton-Gorius J.
Biosynthesis of major platelet proteins in human blood platelets.
Eur J Biochem.
1987;
164
189-195
34
Belloc F, Hourdille P, Boisseau M R, Bernard P.
Protein synthesis in human platelets correlation with platelet size.
Nouv Rev Fr Hematol.
1982;
24
369-373
35
Hesketh J, Jodar D, Johannessen A, Partridge K, Pryme I, Tauler A.
Enrichment of specific mRNAs in cytoskeletal-bound and membrane-bound polysomes in
Chinese hamster ovary cells.
Biochem Soc Trans.
1996;
24
187S
36
Clark I E, Wyckoff D, Gavis E R.
Synthesis of the posterior determinant nanos is spatially restricted by a novel cotranslational
regulatory mechanism.
Curr Biol.
2000;
10
1311-1314
37
Houng A K, Maggini L, Clement C Y, Reed G L.
Identification and structure of activated-platelet protein-1, a protein with RNA-binding
domain motifs that is expressed by activated platelets.
Eur J Biochem.
1997;
243
209-218
38
Gingras A-C, Raught B, Sonenberg N.
eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators
of translation.
Annu Rev Biochem.
1999;
68
913-963
39
Hefner Y, Borsch-Haubold A G, Murakami M et al..
Serine 727 phosphorylation and activation of cytosolic phospholipase A2 by MNK1-related
protein kinases.
J Biol Chem.
2000;
275
37542-37551
40
Gingras A C, Kennedy S G, O’Leary M A, Sonenberg N, Hay N.
4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the
AKT(PKB) signaling pathway.
Genes Dev.
1998;
12
502-513
41
Singh J, Kaul D.
RNA-mediated regulation of receptor-ck gene in human platelets.
Mol Cell Biochem.
1997;
173
189-192
42
Lemaitre D, Vericel E, Polette A, Lagarde M.
Effects of fatty acids on human platelet glutathione peroxidase: Possible role of
oxidative stress.
Biochem Pharmacol.
1997;
53
479-486
43
McBane II R D, Ford M A, Karnicki K, Stewart M, Owen W G.
Fibrinogen, fibrin and crosslinking in aging arterial thrombi.
Thromb Haemost.
2000;
84
83-87
44
Wysokinski W, McBane R, Chesebro J H, Owen W G.
Reversibility of platelet thrombosis in vivo. Quantitative analysis in porcine carotid
arteries.
Thromb Haemost.
1996;
76
1108-1113
45
Sakata K, Shigemasa K, Uebaba Y, Nagai N, Ohama K.
Expression of matrix metalloproteinases-2 and -9 by cells isolated from the peritoneal
fluid of women with ovarian carcinoma.
Acta Cytol.
2002;
46
697-703
46
Owen W G, Bichler J, Ericson D, Wysokinski W.
Gating of thrombin in platelet aggregates by po2-linked lowering of extracellular
Ca2+ concentration.
Biochemistry.
1995;
34
9277-9281
47
Abraham R T, Wiederrecht G J.
Immunopharmacology of rapamycin.
Annu Rev Immunol.
1996;
14
483-510
48
Sousa J E, Costa M A, Abizaid A et al..
Lack of neointimal proliferation after implantation of sirolimus-coated stents in
human coronary arteries: a quantitative coronary angiography and three-dimensional
intravascular ultrasound study.
Circulation.
2001;
103
192-195
49
Kaplanski G, Porat R, Aiura K, Erban J K, Gelfand J A, Dinarello C A.
Activated platelets induce endothelial secretion of interleukin-8 in vitro via an
interleukin-1-mediated event.
Blood.
1993;
81
2492-2495
50
Hawrylowicz C M, Santoro S A, Platt F M, Unanue E R.
Activated platelets express IL-1 activity.
J Immunol.
1989;
143
4015-4018
51
Duquette M, Laneuville O.
Translational regulation of prostaglandin endoperoxide h synthase-1 mRNA in megakaryocytic
MEG-01 cells. Specific protein binding to a conserved 20-nucleotide cis element in
the 3′-untranslated region.
J Biol Chem.
2002;
277
44631-44637
52
Kunicki T J, Newman P J.
Synthesis of analogs of human platelet membrane glycoprotein IIb-IIIa complex by chicken
peripheral blood thrombocytes.
Proc Natl Acad Sci USA.
1985;
82
7319-7323
53
Waggoner S A, Liebhaber S A.
Regulation of alpha-globin mRNA stability.
Exp Biol Med (Maywood).
2003;
228
387-395
54
Knowles R B, Sabry J H, Martone M E et al..
Translocation of RNA granules in living neurons.
J Neurosci.
1996;
16
7812-7820
Andrew S WeyrichPh.D.
Human Molecular Biology and Genetics, Bldg. 533
Rm. 4220, University of Utah
Salt Lake City, Utah 84112
eMail: andy.weyrich@hmbg.utah.edu