Zusammenfassung
Die Magnetresonanztomographie (MRT) bietet die Möglichkeit, die Koronararterien
nichtinvasiv und ohne den Einsatz ionisierender Strahlung darzustellen. Aufgrund
des geringen Durchmessers, des kurvenreichen Verlaufes und der starken Bewegung
der Koronararterien sowie der Signalüberlagerung von umgebendem Fett und Myokard
ist die koronare Magnetresonanzangiographie (MRA) technisch anspruchsvoll. Im
Vergleich zur invasiven katheterbasierten Koronarangiographie können derzeit nicht
alle Gefäßabschnitte untersucht werden, und in den auswertbaren Abschnitten ist
die Genauigkeit zur Erkennung von Stenosen noch suboptimal. Allerdings lässt sich
das Vorhandensein von Koronaranomalien sowie die Durchgängigkeit von aortokoronaren
Bypasses mit der MRA gut beurteilen. Die Kombination der koronaren MRA mit MRT-Protokollen
zur Ischämiediagnostik hat das Potential, ein klinisch wertvolles Instrument für
die Diagnostik der koronaren Herzkrankheit zu werden.
Summary
Magnetic resonance imaging (MRI) allows the evaluation of coronary arteries non-invasively
and without the use of ionizing radiation. Coronary magnetic resonance angiography
(MRA) is technically demanding due to the small size, tortuous course, and bulk
motion of the coronary arteries as well as signal from surrounding epicardial
fat and myocardium. In comparison to invasive x-ray coronary angiography not all
coronary artery segments can be assessed by coronary MRA. At present the diagnostic
accuracy of coronary MRA for detection of significant stenosis in coronary arteries
is suboptimal. The presence of coronary anomalies and the patency of aortocoronary
bypass grafts can be assessed by MRA with high diagnostic accuracy. The combination
of coronary MRA with other MRI techniques for detection of ischemia has the
potential to be of clinical value in the diagnostic work-up of patients with coronary
artery disease.
Literatur
- 1
Al-Saadi N, Nagel E, Gross M. et al .
Noninvasive detection of myocardial ischemia from perfusion reserve based on
cardiovascular magnetic resonance.
Circulation.
2000;
101
1379-1383
- 2
Botnar R M, Stuber M, Danias P G. et al .
Improved coronary artery definition with T2-weighted, free breathing, three-dimensional
coronary MRA.
Circulation.
1999;
99
3139-3148
- 3
Bunce N H, Jhooti P, Keegan J. et al .
Evaluation of free-breathing three dimensional magnetic resonance coronary angiography
with hybrid ordered phase encoding (HOPE) for the detection of proximal coronary
artery stenosis.
J Magn Reson Imaging.
2001;
14
677-684
- 4
Barkhausen J, Hunold P, Jochims M. et al .
Vergleich von Gradienten-Echo und steady state free precession Sequenzen zur
3D-Navigator-MR-Koronarangiographie.
Fortschr Röntgenstr.
2002;
174
725-730
- 5
Dewey M, Taupitz M.
Coronary angiography by magnetic resonance imaging and computed tomography.
Dtsch Med Wochenschr.
2003;
128
33-35
- 6
Dodge J T, Brown B G, Bolson H T, Dodge H T.
Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic
variation and left ventricular hyperthrophy or dilation.
Circulation.
1992;
86
232-246
- 7
Duerinckx A J, Urman M K.
Two-dimensional coronary MR angiography: analysis of initial clinical results.
Radiology.
1994;
193
731-738
- 8 European Cardiovascular Disease Statistics 2000 Edition. British Heart Foundation
Homepage. 14.6.2004 2004
- 9
Edelmann R R, Manning W J, Burstein D, Paulin S.
Coronary arteries: breath-hold MR angiography.
Radiology.
1991;
181
641-643
- 10
Greil G F, Stuber M, Botnar R M. et al .
Coronary magnetic resonance angiography in adolescents and young adults with
kawasaki disease.
Circulation.
2002;
105
908-911
- 11
Huber M E, Paetsch I, Schnackenburg B. et al .
Performance of a new gadolinium-based intravascular contrast agent in free-breathing
inversion-recovery 3D coronary MRA.
Magn Reson Med.
2003;
49
115-121
- 12
Hug J, Nagel E, Bornstedt A. et al .
Coronary arterial stents: Safety and artifacts during MR imaging.
Radiology.
2000;
216
781-787
- 13
Hundley W G, Hamilton C A, Clarke G D. et al .
Visualization and functional assessment of proximal and middle left anterior
descending coronary stenoses in humans with magnetic resonance imaging.
Circulation.
1999;
99
3248-3254
- 14
Hunold P, Vogt F M, Schmermund A. et al .
Radiation exposure during cardiac CT: effective doses at multi-detector row
CT and electron-beam CT.
Radiology.
2003;
226
145-152
- 15
Jara H, Yu B C, Caruthers S D. et al .
Voxel sensitivity function description of flow-induced signal loss in MR imaging:
Implications for black-blood MR angiography with spin-echo sequences.
Magn Reson Med.
1999;
41
575-590
- 16
Kaul M G, Stork A, Bansmann P M. et al .
Evaluation of Balanced Steady-State Free Precession (TrueFISP) and K-space Segmented
Gradient Echo Sequences for 3D Coronary MR Angiography with Navigator Gating
at 3 Tesla.
Rofo.
2004;
176
1560-1565
- 17
Kessler W, Achenbach S, Moshage W. et al .
Beurteilung von Koronararterienstenosen mittels atemkontrollierter NMR-Angiographie.
Z Kardiol.
1998;
87
119-127
- 18
Kim R J, Fieno D S, Parrish T B. et al .
Relationship of MRI Delayed Enhancement to Irreversible Injury, Infarct Age,
and Contractile Function.
Circulation.
1999;
100
1992-2002
- 19
Kim W Y, Stuber M, Börnert P. et al .
Three-Dimensional Black-Blood Cardiac Magnetic Resonance Coronary Vessel Wall
Imaging Detects Positive Arterial Remodeling in Patients With Nonsignificant
Coronary Artery Disease.
Circulation.
2002;
106
296-299
- 20
Kim W Y, Danias P, Stuber M. et al .
Coronary magnetic resonance angiography for the detection of coronary stenosis.
N Engl J Med.
2001;
345
1863-1869
- 21
Langerak S E, Vliegen H W, de Roos A. et al .
Detection of Vein Graft Disease Using High-Resolution Magnetic Resonance
Angiography.
Circulation.
2002;
105
328-333
- 22
Langerak S E, Vliegen H W, Jukema J W. et al .
Value of Magnetic Resonance Imaging for the Noninvasive Detection of Stenosis
in Coronary Artery Bypass Grafts and Recipient Coronary Arteries.
Circulation.
2003;
107
1502
- 23
Laskey W K, Kimmel S, Krone R J.
Contemporary trends in coronary intervention: A report from the registry of
the society for cardiac angiography and interventions.
Cathet Cardiovasc Intervent.
2000;
49
19-22
- 24
Lethimonnier F, Furber A, Morel O. et al .
Three-dimensional coronary artery MR imaging using prospective real-time respiratory
navigator and linear phase shift processing: Comparison with conventional coronary
angiography.
Magnetic Resonance Imaging.
1999;
17
1111-1120
- 25
Li D, Paschal C B, Haacke E M, Adler L P.
Coronary arteries: three-dimensional MR imaging with fat saturation and magnetization
transfer contrast.
Radiology.
1993;
187
401-406S>
- 26
McConnell M V, Ganz P, Selwyn A P. et al .
Identification of anomalous coronary arteries and their anatomic course by magnetic
resonance coronary angiography.
Circulation.
1995;
92
3158-3162
- 27
Manning W J, Wei L i, Edelmann R R.
A preliminary report comparing magnetic resonance coronary angiography with
conventional angiography.
N Engl J Med.
1993;
328
828-832
- 28
Muller M F, Fleisch M, Kroeker R. et al .
Proximal coronary artery stenosis: three-dimensional MRI with fat saturation
and navigator echo.
J Magn Reson Imaging.
1997;
7
644-651
- 29
Moustapha A I, Pereyra M, Muthupillai R. et al .
Coronary magnetic resonance angiography using a free-breathing, T2 weighted,
three-dimensional gradient echo sequence with navigator respiratory and ECG
gating can be used to detect coronary artery disease.
J Am Coll Cardiol.
2001;
37
380A
- 30
Morin R L, Gerber T C, McCollough C H.
Radiation Dose in Computed Tomography of the Heart.
Circulation.
2003;
107
917-922
- 31
Nagel E, Lehmkuhl H B, Bocksch W. et al .
Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the
use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography.
Circulation.
1999;
99
763-770
- 32
Nagel E, Thouet T, Klein C. et al .
Noninvasive determination of coronary blood flow velocity with cardiovascular
magnetic resonance in patients after stent deployment.
Circulation.
2003;
107
1738-1743
- 33
Nieman K, Cademartiri F, Lemos P A. et al .
Reliable noninvasive coronary angiography with fast submillimeter multislice
spiral computed tomography.
Circulation.
2002;
106
2051-2054
- 34
Pennell D J, Bogren H G, Keegan J. et al .
Assessment of coronary artery stenosis by magnetic resonance imaging.
Heart.
1996;
75
127-133
- 35
Post J C, van Rossum A C, Bronzwaer J G. et al .
Magnetic resonance angiography of anomalous coronary arteries: a new gold standard
for delineating the proximal course?.
Circulation.
1995;
92
3163-3171
- 36
Post J C, van Rossum A C, Hofman M B. et al .
Three-dimensional respiratory-gated MR angiography of coronary arteries: comparison
with conventional coronary angiography.
Am J Roentgenol.
1996;
166
1399-1404
- 37
Post J C, van Rossum A C, Hofman M B. et al .
Clinical utility of two-dimensional magnetic resonance angiography in detecting
coronary artery disease.
Eur Heart J.
1997;
18
426-433
- 38
Pruessmann K P, Weiger M, Scheidegger M B. et al .
SENSE: Sensitivity encoding for fast MRI.
Magn Reson Med.
1999;
42
952-962
- 39
Regenfus M, Ropers D, Achenbach S. et al .
Noninvasive detection of coronary artery stenosis using contrast-enhanced three-dimensional
breath-hold magnetic resonance coronary angiography.
J Am Coll Cardiol.
2000;
36
44-50
- 40
Ricciardi M J, Wu E, Davidson C J. et al .
Visualization of discrete microinfarction after percutaneous coronary intervention
associated with mild creatine kinase-MB elevation.
Circulation.
2001;
103
2780-2783
- 41
Rogers W J, Shapiro E P, Weiss J L. et al .
Quantification of and correction for left ventricular systolic long- axis shortening
by magnetic resonance tissue tagging and slice isolation.
Circulation.
1991;
84
721-731
- 42
Ropers D, Baum U, Pohle K. et al .
Detection of coronary artery stenoses with thin-slice multi-detector row spiral
computed tomography and multiplanar reconstruction.
Circulation.
2003;
107
664-666
- 43
Sandstede J J, Pabst T, Beer M. et al .
Three-dimensional MR coronary angiography using the navigator technique compared
with conventional coronary angiography.
Am J Roentgenol.
1999;
172
135-139
- 44
Sardanelli F, Molinari G, Zandrino F. et al .
Three-dimensional navigator-echo MR coronary angiography in detecting stenoses
of the major epicardial vessels, with conventional coronary angiography as the
standard of reference.
Radiology.
2000;
214
808-814
- 45
Scanlon P J, Faxon D P, Audet A M. et al .
ACC/AHA guidelines for coronary angiography: a report of the American College
of Cardiology/American Heart Association task force on Practice Guidelines (Committee
on Coronary Angiography).
J Am Coll Cardiol.
1999;
33
1756-1782
- 46
Silber S, Albrecht A, Gohring S. et al .
First annual report of practitioners of interventional cardiology in private
practice in Germany. Results of producers of left heart catheterization and
coronary interventions in the year 1996.
Herz.
1998;
23
47-57
- 47
Spuentrup E, Botnar R M, Lanzer P.
Technische Aspekte der MR-Koronarangiographie.
Z Kardiol.
2002;
91
107-124
- 48
Stuber M, Botnar R M, Danias P G. et al .
Contrast agent-enhanced, free-breathing, three-dimensional coronary magnetic
resonance angiography.
J Magn Reson Imaging.
1999;
10
790-799
- 49
Stuber M, Botnar R M, Kissinger K V, Manning W J.
Free-breathing black-blood coronary MR angiography: initial results.
Radiology.
2001;
219
278-283
- 50
Stuber M, Botnar R M, Fischer S E. et al .
Preliminary report on in vivo coronary MRA at 3 Tesla in humans.
J Magn Reson Med.
2002;
48
425-429
- 51
van Geuns R JM, de Bruin H G, Rensing B JWM. et al .
Magnetic resonance imaging of the coronary arteries: clinical results from three
dimensional evaluation of a respiratory gated technique.
Heart.
1999;
82
515-519
- 52
van Geuns R JM, Wielopolski P A, de Bruin H G. et al .
MR coronary angiography with breath-hold targeted volumes: Preliminary clinical
results.
Radiology.
2000;
217
270-277
- 53
Vrachliotis T G, Bis K G, Aliabadi D. et al .
Contrast-enhanced breath-hold MR angiography for evaluating patency of coronary
artery bypass grafts.
Am J Roentgenol.
1997;
168
1073-1080
- 54
Wagner A, Mahrholdt H, Holly T A. et al .
Contrast-enhanced MRI and routine single photon emission computed tomography
(SPECT) perfusion imaging for detection of subendocardial myocardial infarcts:
an imaging study.
Lancet.
2003;
361
374-379
- 55
Watanuki A, Yoshino H, Udagawa H. et al .
Quantitative evaluation of coronary stenosis by coronary magnetic resonance
angiography.
Heart Vessels.
2000;
15
159-166
- 56
Watanabe Y, Nagayama M, Amoh Y. et al .
High-sesolution selective three-dimensional magnetic resonance coronary angiography
with navigator-echo technique: Segment-by-segment evaluation of coronary artery
stenosis.
J Magn Reson Imaging.
2002;
16
238-245
- 57
Wintersperger B J, Engelmann M G, von Smekal A. et al .
Patency of coronary bypass grafts: assessment with breath-hold contrast-enhanced
MR-angiography - value of a non-electrocardiographically triggered technique.
Radiology.
1998;
208
345-351
- 58
Woodard P K, Li D, Haacke E M. et al .
Detection of coronary stenoses on source and projection images using three-dimensional
MR angiography with retrospective respiratory gating: preliminary experience.
Am J Roentgenol.
1998;
170
883-888
- 59
Yucel E K, Anderson C M, Edelman R R. et al .
AHA scientific statement. Magnetic resonance angiography: update on applications
for extracranial arteries.
Circulation.
1999;
100
2284-2301
- 60 FDA. homepage at http://www.fda.gov/cdrh/safety/mrisafety.html. 14.06.2004
2004
Prof. Dr. Udo Sechtem
Abteilung für Kardiologie und Pulmologie
Auerbachstraße 110
70376 Stuttgart
Phone: 0711/81013456
Fax: 0711/81013795
Email: udo.sechtem@rbk.de