Zusammenfassung
Die Ergebnisse der Grundlagenforschung liefern Informationen über viele neue molekulare
Strukturen, die als potenzielle neue diagnostische oder therapeutische Zielstrukturen
dienen können. Die Selektion und Evaluation dieser Zielstrukturen wird Informationen
über Physiologie, Biochemie und Pharmakologie benötigen. Diese Informationen können
zum Teil durch nuklearmedizinische Methoden erhalten werden. So können nuklearmedizinische
Verfahren zur Bestimmung der Funktion und Regulation von Genen eingesetzt werden.
Die Pharmakogenomik wird neue Surrogatmarker für die Verlaufsbeobachtung von Therapien
identifizieren, die mögliche neue Radiotracer darstellen. Neue Therapieansätze benötigen
Bioverteilungsstudien in präklinischen Stadien und Verfahren zur Beurteilung ihrer
Effizienz. Schließlich können biotechnologische Verfahren wie Phagen-Display zur Entwicklung
neuer Biomoleküle für die isotopenbasierte Diagnostik und Therapie eingesetzt werden
[127].
Abstract
Basic research delivers information concerning new molecular structures with potential
use as target structures for diagnosis and therapy with further need for selection
and evaluation by the methods of physiology, biochemistry and pharmacology using in
part nuclear medical techniques for estimation of gene function and regulation. Pharmacogenomic
will identify new surrogate markers as potential new radiotracers for follow-up of
therapies. New therapeutical approaches will need biodistribution studies in the preclinical
stage and techniques for evaluation of efficiency. At least, biotechnological techniques
such as phage display may be suitable to develop new biomolecules for isotope related
diagnostics and therapy.
Schlüsselwörter
Molekularbiologie - Antisense-Moleküle - Suizid-Gene - Iodidspeicherung - MIBG-Speicherung
- Gentherapie
Key words
Molecular imaging - gene therapy - gene expression - peptides
Literatur
- 1
Zamecnik P C, Stephenson M L.
Inhibition of Rous sarcoma virus replication and cell transformation by a specific
oligodeoxynucleotide.
Proc Natl Acad Sci USA.
1978;
75
280-285
- 2
Mukhopadhyay T, Tainsky M, Cavender A C, Roth J A.
Specific inhibition of K-ras expression and tumorigenicity of lung cancer cells by
antisense RNA.
Cancer Res.
1991;
51
1744-1748
- 3
Hannon G J.
RNA interference.
Nature.
2002;
418
244-251
- 4
Zeng Y. et al .
Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when
expressed in human cells.
Mol Cell.
2002;
9
1327-1333
- 5
Sui G. et al .
A DNA vector-based RNAi technology to suppress gene expression in mammalian cells.
Proc Natl Acad Sci USA.
2002;
99
5515-5520
- 6
Moss E G.
Silencing unhealthy alleles naturally.
Trends Biotechnol.
2003;
21
185-187
- 7
Claverie J M.
What if there are only 30 000 human genes?.
Science.
2001;
291
1255-1257
- 8
Woolf T M, Melton D A, Jennings C GB.
Specificity of antisense oligonucleotides in vivo.
Proc Natl Acad Sci USA.
1992;
89
7305-7309
- 9
Iversen P L, Zhu S, Meyer A, Zon G.
Cellular uptake and subcellular distribution of phosphorothioate oligonucleotides
into cultured cells.
Antisense Res Dev.
1992;
2
211-222
- 10
Loke S L, Stein C A, Zhang X H, Mori K, Nakanishi M, Subasinghe C, Cohen J S, Neckers L M.
Characterization of oligonucleotide transport into living cells.
Proc Natl Acad Sci USA.
1989;
86
3474-3478
- 11
Dewanjee M K, Ghafouripour A K, Kapadvanjwala M, Dewanjee S, Serafini A N, Lopez D M,
Sfakianakis G N.
Noninvasive imaging of c-myc oncogene messenger RNA with indium-111-antisense probes
in a mammary tumor-bearing mouse model.
J Nucl Med.
1994;
35
1054-1063
- 12
Cammilleri S, Sangrajrang S, Perdereau B, Brixy F, Calvo F, Bazin H, Magdelenat H.
Biodistribution of iodine-125 tyramine transforming growth factor? Antisense oligonucleotide
in athymic mice with a human mammary tumor xenograft following intratumoral injection.
Eur J Nucl Med.
1996;
23
448-452
- 13
Kobori N, Imahori Y, Mineura K, Ueda S, Fujii R.
Visualization of mRNA expression in CNS using 11C-labeled phosphorothioate oligodeoxynucleotide.
Neuroreport.
1999;
10
2971-2974
- 14
Shi N, Boado R J, Pardridge W M.
Antisense imaging of gene expression in the brain in vivo.
Proc Natl Acad Sci USA.
2000;
97
14709-14714
- 15
Urbain J L, Shore S K, Vekemans M C, Cosenza S C, DeRiel K, Patel G V, Charkes N D,
Malmud L S, Reddy E P.
Scintigraphic imaging of oncogenes with antisense probes: does it make sense?.
Eur J Nucl Med.
1995;
22
499-504
- 16
Tavitian B, Terrazzino S, Kühnast B, Marzabal S, Stettler O, Dolle F, Deverre J R,
Jobert A, Hinnen F, Bendriem B, Crouzel C, Di Giamberardino L.
In vivo imaging of oligonucleotides with positron emission tomography.
Nature Med.
1998;
4
467-471
- 17
Watanabe N, Sawai H, Endo K, Shinozuka K, Ozaki H, Tanada S, Murata H, Sasaki Y.
Labeling of phosphorothioate antisense oligonucleotides with yttrium-90.
Nucl Med Biol.
1999;
26
239-243
- 18
Anderson L, Seilhamer J.
A comparison of selected mRNA and protein abundances in human liver.
Electrophoresis.
1977;
18
533-537
- 19
Futcher B, Latter G I, Monardo P, McLaughlin C S, Garrels J I.
A sampling of the yeast proteome.
Mol Cell Biol.
1999;
19
7357-7368
- 20
Gygi S P, Rist B, Gerber S A, Turecek F, Gelb M H, Aebersold R.
Quantitative analysis of complex protein mixtures using isotope-coded affinity tags.
Nat Biotechnol.
1999;
17
994-999
- 21
Schellingerhout D, Bogdanov A, Marecos E, Spear M, Breakefield X, Weissleder R.
Mapping the in vivo distribution of herpes simplex virions.
Hum Gene Ther.
1998;
9
1543-1549
- 22
Zinn K R, Douglas J T, Smyth C A, Liu H G, Wu Q, Krasnykh V N, Mountz J D, Curiel D T,
Mountz J M.
Imaging and tissue biodistribution of 99mTc-labeled adenovirus knob (serotype 5).
Gene Ther.
1998;
5
798-808
- 23
Caruso M, Panis Y, Gagandeep S, Houssin D, Salzmann J L, Klatzman D.
Regression of established macroscopic liver metastases after in situ transduction
of a suicide gene.
Proc Natl Acad Sci USA.
1993;
90
7024-7028
- 24
Chen S H, Shine H D, Goodman J C, Grossman R G, Woo S LC.
Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated
gene transfer in vivo.
Proc Natl Acad Sci USA.
1994;
91
3054-3057
- 25
Culver K W, Ram Z, Walbridge S. et al .
In vivo gene transfer with retroviral vector-producer cells for treatment of experimental
brain tumors.
Science.
1992;
256
1550-1552
- 26
Oldfield E H, Ram Z, Culver K W, Blaese R M, DeVroom H L, Anderson W F.
Gene therapy for the treatment of brain tumors using intra-tumoral transduction with
the thymidine kinase gene and intravenous ganciclovir.
Hum Gene Ther.
1993;
1
39-69
- 27
Keller P M, Fyfe J A, Beauchamp L. et al .
Enzymatic phosphorylation of acyclic nucleoside analogs and correlations with antiherpetic
activities.
Biochem Pharmacol.
1981;
30
3071-3077
- 28
Haberkorn U, Oberdorfer F, Gebert J. et al .
Monitoring of gene therapy with cytosine deaminase: in vitro studies using 3H-5-fluorocytosine.
J Nucl Med.
1996;
37
87-94
- 29
Huber B E, Austin E A, Good S S, Knick V C, Tibbels S, Richards C A.
In vivo antitumor activity of 5-fluorocytosine on human colorectal carcinoma cells
genetically modified to express cytosine deaminase.
Cancer Res.
1993;
53
4619-4626
- 30
Mullen C A, Coale M M, Lowe R, Blaese R M.
Tumors expressing the cytosine deaminase suicide gene can be eliminated in vivo with
5-fluorocytosine and induce protective immunity to wild type tumor.
Cancer Res.
1994;
54
1503-1506
- 31
Monclus M, Luxen A, Van Naemen J. et al .
Development of PET radiopharmaceuticals for gene therapy: synthesis of 9-((1-(18F)fluoro-3-hydroxy-2-propoxy)methyl)guanine.
J Label Comp Radiopharm.
1995;
37
193-195
- 32
Visser G WM, Boele S, Knops G HJN, Herscheid J DM, Hoekstra A.
Synthesis and biodistribution of (18F)-5-fluorocytosine.
Nucl Med Comm.
1985;
6
455-459
- 33
Bouali-Benazzouz R, Laine M, Vicat J M. et al .
Therapeutic efficacy of the thymidine kinase/ganciclovir system on large experimental
gliomas: a nuclear magnetic resonance imaging study.
Gene Ther.
1999;
6
1030-1037
- 34
Izquierdo M. et al .
Long-term rat survival after malignant brain tumour regression by retroviral gene
therapy.
Gene Ther.
1995;
2
66-69
- 35
Maron A. et al .
Gene therapy of rat C6 glioma using adenovirus-mediated transfer of the Herpes Simplex
Virus thymidine kinase gene: long-term follow-up by magnetic resonance imaging.
Gene Ther.
1996;
3
315-322
- 36
Ross B D, Kim B, Davidson B L.
Assessment of ganciclovir toxicity to experimental intracranial gliomas following
recombinant adenoviral-mediated transfer of the herpes simplex virus thymidine kinase
gene by magnetic resonance imaging and proton magnetic resonance spectroscopy.
Clin Cancer Res.
1995;
1
651-657
- 37
Sobol R E. et al .
Interleukin-2 gene therapy in a patient with glioblastoma.
Gene Ther.
1995;
2
164-167
- 38
Shand N, Weber F, Mariani L. et al .
A phase 1-2 clinical trial of gene therapy for recurrent glioblastoma multiforme by
tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir.
GLI328 European-Canadian Study Group.
Hum Gene Ther.
1999;
10
2325-2335
- 39
Ram Z, Walbridge S, Shawker T, Culver K W, Blaese R M, Oldfield E H.
The effect of thymidine kinase transduction and ganciclovir therapy on tumor vasculature
and growth of 9L-gliomas in rats.
J Neurosurg.
1994;
81
256-260
- 40
Ram Z, Culver K, Oshiro E M. et al .
Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing
cells.
Nature Med.
1997;
3
1354-1361
- 41
Morin K W, Knaus E E, Wiebe L I, Xia H, McEwan A J.
Reporter gene imaging: effects of ganciclovir treatment on nucleoside uptake, hypoxia
and perfusion in a murine gene therapy tumour model that expresses herpes simplex
type-1 thymidine kinase.
Nucl Med Commun.
2000;
21
129-137
- 42
Haberkorn U, Morr I, Oberdorfer F. et al .
Fluorodeoxyglucose uptake in vitro: aspects of method and effects of treatment with
gemcitabine.
J Nucl Med.
1994;
35
1842-1850
- 43
Haberkorn U, Bellemann M E, Altmann A, Gerlach L, Morr I, Oberdorfer F, Brix G, Doll J,
Blatter J, van Kaick G.
F-18-fluoro-2-deoxyglucose uptake in rat prostate adenocarcinoma during chemotherapy
with 2′,2′-difluoro-2′-deoxycytidine.
J Nucl Med.
1997;
38
1215-1221
- 44
Rozenthal J M, Levine R L, Nickles R J, Dobkin J A.
Glucose uptake by gliomas after treatment.
Arch Neurol.
1989;
46
1302-1307
- 45
Haberkorn U, Altmann A, Morr I. et al .
Multi tracer studies during gene therapy of hepatoma cells with HSV thymidine kinase
and ganciclovir.
J Nucl Med.
1997;
38
1048-1054
- 46
Haberkorn U, Bellemann M E, Gerlach L, Morr I, Trojan H, Brix G, Altmann A, Doll J,
van Kaick G.
Uncoupling of 2-fluoro-2-deoxyglucose transport and phosphorylation in rat hepatoma
during gene therapy with HSV thymidine kinase.
Gene Ther.
1998;
5
880-887
- 47
Clancy B M, Czech M P.
Hexose transport stimulation and membrane redistribution of glucose transporter isoforms
in response to cholera toxin, dibutyryl cyclic AMP, and insulin in 3T3 adipocytes.
J Biol Chem.
1990;
265
12434-12443
- 48
Wertheimer E, Sasson S, Cerasi E, Ben-Neriah Y.
The ubiquitous glucose transporter GLUT-1 belongs to the glucose-regulated protein
family of stress-inducible proteins.
Proc Natl Acad Sci USA.
1991;
88
2525-2529
- 49
Widnell C C, Baldwin S A, Davies A, Martin S, Pasternak C A.
Cellular stress induces a redistribution of the glucose transporter.
FASEB J.
1990;
4
1634-1637
- 50
Haberkorn U, Altmann A, Morr I. et al .
Gene therapy with Herpes Simplex Virus thymidine kinase in hepatoma cells: uptake
of specific substrates.
J Nucl Med.
1997;
38
287-294
- 51
Saito Y, Price R, Rottenberg D A, Fox J J, Su T L, Watanabe K A, Philipps F A.
Quantitative autoradiographic mapping of herpes simplex virus encephalitis with radiolabeled
antiviral drug.
Science.
1982;
217
1151-1153
- 52
Germann C, Shields A F, Grierson J R, Morr I, Haberkorn U.
5-Fluoro-1-(2′-deoxy-2′-fluoro-β-D-ribofuranosyl)uracil trapping in Morris hepatoma
cells expressing the Herpes Simplex Virus thymidine kinase gene.
J Nucl Med.
1998;
39
1418-1423
- 53
Haberkorn U, Khazaie K, Morr I, Altmann A, Müller M, van Kaick G.
Ganciclovir uptake in human mammary carcinoma cells expressing Herpes Simplex Virus
thymidine kinase.
Nucl Med Biol.
1998;
25
367-373
- 54
Bi W L, Parysk L M, Warnick R, Stambrook P J.
In vitro evidence that metabolic cooperation is responsible for the bystander effect
observed with HSV-tk retroviral gene therapy.
Hum Gene Ther.
1993;
4
725-731
- 55
Freeman S M, Abbond C N, Whartenby K A. et al .
The “bystander effect”: tumor regression when a fraction of tumor mass is genetically
modified.
Cancer Res.
1993;
53
5274-5283
- 56
Chen C Y, Chang Y N, Ryan P, Linscott M, McGarrity G J, Chiang Y L.
Effect of Herpes Simplex Virus thymidine kinase expression levels on ganciclovir-mediated
cytotoxicity and the “bystander effect”.
Hum Gene Ther.
1995;
6
1467-1476
- 57
Haberkorn U.
Monitoring of gene transfer for cancer therapy with radioactive isotopes.
Ann Nucl Med.
1999;
13
369-377
- 58
Alauddin M M, Shahinian A, Kundu R K, Gordon E M, Conti P S.
Evaluation of 9-[(3-18F-fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]-FHPG) in vitro and in vivo as a probe for PET imaging of gene incorporation and
expression in tumors.
Nucl Med Biol.
1999;
26
371-376
- 59
Alauddin M M, Conti P S.
Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG): a new potential imaging agent for viral infection and gene therapy using
PET.
Nucl Med Biol.
1998;
25
175-180
- 60
de Vries E F, van Waarde A, Harmsen M C, Mulder N H, Vaalburg W, Hospers G A.
[11C]FMAU and [18F]FHPG as PET tracers for herpes simplex virus thymidine kinase enzyme activity and
human cytomegalovirus infections.
Nucl Med Biol.
2000;
27
113-119
- 61
Gambhir S S, Barrio J R, Phelps M E, Iyer M, Namavari M, Satyamurthy N, Wu L, Green L A,
Bauer E, MacLaren D C, Nguyen K, Berk A J, Cherry S R, Herschman H R.
Imaging adenoviral-directed reporter gene expression in living animals with positron
emission tomography.
Proc Natl Acad Sci USA.
1999;
96
2333-2338
- 62
Gambhir S S, Bauer E, Black M E. et al .
A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved
sensitivity for imaging reporter gene expression with positron emission tomography.
Proc Natl Acad Sci USA.
2000;
97
2785-2790
- 63
Haubner R, Avril N, Hantzopoulos P A, Gansbacher B, Schwaiger M.
In vivo imaging of herpes simplex virus type 1 thymidine kinase gene expression: early
kinetics of radiolabelled FIAU.
Eur J Nucl Med.
2000;
27
283-291
- 64
Hustinx R, Shiue C Y, Alavi A, McDonald D, Shiue G G, Zhuang H, Lanuti M, Lambright E,
Karp J S, Eck S.
Imaging in vivo herpes simplex virus thymidine kinase gene transfer to tumour-bearing
rodents using positron emission tomography and (18F)FHPG.
Eur J Nucl Med.
2001;
28
5-12
- 65
Iwashina T, Tovell D R, Xu L, Tyrrell D L, Knaus E E, Wiebe L I.
Synthesis and antiviral activity of IVFRU, a potential probe for the non-invasive
diagnosis of Herpes Simplex encephalitis.
Drug Design and Delivery.
1988;
3
309-321
- 66
Morin K W, Knaus E E, Wiebe L I.
Non-invasive scintigraphic monitoring of gene expression in a HSV-1 thymidine kinase
gene therapy model.
Nucl Med Commun.
1997;
18
599-605
- 67
Tjuvajev J G, Stockhammer G, Desai R, Uehara H, Watanabe K, Gansbacher B, Blasberg R G.
Imaging the expression of transfected genes in vivo.
Cancer Res.
1995;
55
6126-6132
- 68
Tjuvajev J G. et al .
Noninvasive imaging of Herpes Simplex Virus thymidine kinase gene transfer and expression:
a potential method for monitoring clinical gene therapy.
Cancer Res.
1996;
56
4087-4095
- 69
Wiebe L I, Morin K W, Knaus E E.
Radiopharmaceuticals to monitor gene transfer.
Q J Nucl Med.
1997;
41
79-89
- 70
Wiebe L I, Knaus E E, Morin K W.
Radiolabelled pyrimidine nucleosides to monitor the expression of HSV-1 thymidine
kinase in gene therapy.
Nucleosides Nucleotides.
1999;
18
1065-1066
- 71
Yu Y, Annala A J, Barrio J R. et al .
Quantification of target gene expression by imaging reporter gene expression in living
animals.
Nature Med.
2000;
6
933-937
- 72
Arturi F, Russo D, Schlumberger M. et al .
Iodide symporter gene expression in human thyroid tumors.
J Clin Endocrinol Metab.
1998;
83
2493-2496
- 73
Caillou B, Troalen F, Baudin E, Talbot M, Filetti S, Schlumberger M, Bidart J M.
Na+/I-symporter distribution in human thyroid tissues: an immunohistochemical study.
J Clin Endocrinol Metab.
1998;
83
4102-4106
- 74
Cho J Y, Sagartz J E, Capen C C, Mazzaferri E L, Jhiang S M.
Early cellular abnormalities induced by RET/PTC1 oncogene in thyroid-targeted transgenic
mice.
Oncogene.
1999;
18
3659-3665
- 75
Lazar V, Bidart J M, Caillou B, Mahe C, Lacroix L, Filetti S, Schlumberger M.
Expression of the Na+/I-symporter gene in human thyroid tumors: a comparison study
with other thyroid-specific genes.
J Clin Endocrinol Metab.
1999;
84
3228-3234
- 76
Ryu K Y, Senokozlieff M E, Smanik P A. et al .
Development of reverse transcription-competitive polymerase chain reaction method
to quantitate the expression levels of human sodium iodide symporter.
Thyroid.
1999;
9
405-409
- 77
Haberkorn U, Henze M, Altmann A, Jiang S, Morr I, Mahmut M, Peschke P, Debus J, Kübler W,
Eisenhut M.
Transfer of the human sodium iodide symporter gene enhances iodide uptake in hepatoma
cells.
J Nucl Med.
2001;
42
317-325
- 78
Shimura H, Haraguchi K, Miyazaki A, Endo T, Onaya T.
Iodide uptake and experimental 131J therapy in transplanted undifferentiated thyroid cancer cells expressing the Na+/I-symporter gene.
Endocrinology.
1997;
138
4493-4496
- 79
Smanik P A, Liu Q, Furminger T L, Ryu K, Xing S, Mazzaferri E L, Jhiang S M.
Cloning of the human sodium iodide symporter.
Biochem Biophys Res Commun.
1996;
226
339-345
- 80
Boland A, Ricard M, Opolon P, Bidart J M, Yeh P, Filetti S, Schlumberger M, Perricaudet M.
Adenovirus-mediated transfer of the thyroid sodium/Iodide symporter gene into tumors
for a targeted radiotherapy.
Cancer Res.
2000;
60
3484-3492
- 81
Cho J Y, Xing S, Liu X, Buckwalter T LF, Hwa L, Sferra T J, Chiu I M, Jhiang S M.
Expression and activity of human Na+/I-symporter in human glioma cells by adenovirus-mediated gene delivery.
Gene Ther.
2000;
7
740-749
- 82
Mandell R B, Mandell L Z, Link C J.
Radioisotope concentrator gene therapy using the sodium/iodide symporter gene.
Cancer Res.
1999;
59
661-668
- 83
Spitzweg C, Zhang S, Bergert E R. et al .
Prostate-specific antigen (PSA) promoter-driven androgen-inducible expression of sodium
iodide symporter in prostate cancer cell lines.
Cancer Res.
1999;
59
2136-2141
- 84
Haberkorn U, Kinscherf R, Kissel M. et al .
Enhanced iodide transport after transfer of the human sodium iodide symporter gene
is associated with lack of retention and low absorbed dose.
Gene Ther.
2003;
10
774-780
- 85
Haberkorn U, Beuter P, Kübler W, Eskerski H, Eisenhut M, Kinscherf R, Zitzmann S,
Strauss L G, Dimitrakopoulou-Strauss A, Altmann A.
Iodide kinetics and dosimetry in vivo after transfer of the human sodium iodide symporter
gene in rat thyroid carcinoma cells.
J Nucl Med.
2004;
45
827-833
- 86
Haberkorn U, Altmann A, Jiang S. et al .
Iodide uptake in human anaplastic thyroid carcinoma cells after transfer of the human
thyroid peroxidase gene.
Eur J Nucl Med.
2001;
28
633-638
- 87
Guo J, McLachlan S M, Hutchinson S, Rapoport B.
The greater glycan content of recombinant human thyroid peroxidase of mammalian than
of insect cell origin facilitates purification to homogeneity of enzymatically protein
remaining soluble at high concentration.
Endocrinology.
1998;
139
999-1005
- 88
Hidaka Y, Hayashi Y, Fisfalen M E, Suzuki S, Takeda T, Refetoff S, DeGroot L J.
Expression of thyroid peroxidase in EBV-transformed B cell lines using adenovirus.
Thyroid.
1996;
6
23-28
- 89
Kaufman K D, Filetti S, Seto P, Rapoport B.
Recombinant human thyroid peroxidase generated in eukaryotic cells: a source of specific
antigen for the immunological assay of antimicrosomal antibodies in the sera of patients
with autoimmune thyroid disease.
J Clin Endocrinol Metab.
1990;
70
724-728
- 90
Kimura S, Kotani T, Ohtaki S, Aoyama T.
cDNA-directed expression of human thyroid peroxidase.
FEBS letters.
1989;
250
377-380
- 91
Giraud A, Franc J L, Long Y, Ruf J.
Effects of deglycosylation of human thyroperoxidase on its enzymatic activity and
immunoreactivity.
J Endocrinol.
1992;
132
317-323
- 92
Giraud A, Siffroi S, Lanet J, Franc J L.
Binding and internalization of thyroglobulin: selectivity, pH dependence, and lack
of tissue specificity.
Endocrinology.
1997;
138
2325-2332
- 93
Ohtaki S, Nakagawa H, Nakamura M, Kotani T.
Thyroid peroxidase: experimental and clinical integration.
Endocrine J.
1996;
43
1-14
- 94
Ohtaki S, Kotani T, Nakamura Y.
Characterization of human thyroid peroxidase purified by monoclonal antibody-assisted
chromatography.
J Clin Endocrinol Metab.
1986;
63
570-576
- 95
Taurog A, Dorris M L, Yokoyama N, Slaughter C.
Purification and characterization of a large, tryptic fragment of human thyroid peroxidase
with high catalytic activity.
Arch Biochem Biophys.
1990;
278
333-341
- 96
Smets L A, Loesberg C, Janssen M, Metwally E A, Huiscamp R.
Active uptake and extravesicular storage of m-iodobenzyl guanidine in human neuroblastoma.
Cancer Res.
1989;
49
2941-2944
- 97
Wafelman A R, Hoefnagel C A, Maes R AA, Beijnen J H.
Radioiodinated metaiodo-benzylguanidine: a review of its distribution and pharmacokinetics,
drug interactions, cytotoxicity and dosimetry.
Eur J Nucl Med.
1994;
21
545-559
- 98
Mairs R J, Livingstone A, Gaze M N, Wheldon T E, Barrett A.
A Prediction of accumulation of 131I-labelled meta-iodobenzylguanidine in neuroblastoma cell lines by means of reverse
transcription and polymerase chain reaction.
Br J Cancer.
1994;
70
97-101
- 99
Glowniak J V, Kilty J E, Amara S G, Hoffman B J, Turner F E.
Evaluation of metaiodobenzylguanidine uptake by the norepinephrine, dopamine and serotonin
transporters.
J Nucl Med.
1993;
34
1140-1146
- 100
Lode H N, Bruchelt G, Seitz G. et al .
Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of monoamine transporters
in neuroblastoma cell lines: correlations to meta-iodobenzylguanidine (MIBG) uptake
and tyrosine hydroxylase gene expression.
Eur J Cancer.
1995;
31
586-590
- 101
Pacholczyk T, Blakely R D, Amara S G.
Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline
transporter.
Nature.
1991;
350
350-354
- 102
Boyd M, Cunningham S H, Brown M M, Mairs R J, Wheldon T E.
Noradrenaline transporter gene transfer for radiation cell kill by 131I meta-iodobenzylguanidine.
Gene Ther.
1999;
6
1147-1152
- 103
Altmann A, Kissel M, Zitzmann S. et al .
Increased MIBG uptake after transfer of the human norepinephrine transporter gene
in rat hepatoma.
J Nucl Med.
2003;
44
973-980
- 104
Bomanji J, Levison D A, Flatman W D. et al .
Uptake of iodine-123 MIBG by pheochromocytomas, paragangliomas, and neuroblastomas:
a histopathological comparison.
J Nucl Med.
1987;
28
973-978
- 105
Petrich T. et al .
Establishment of radioactive astatine and iodine uptake in cancer cell lines expressing
the human sodium iodide symporter.
Eur J Nucl Med.
2002;
29
842-854
- 106
Reubi J C, Schaer J C, Waser B, Menod G.
Expression and localization of somatostatin receptor SSTR1, SSTR2 and SSTR3 messenger
RNAs in primary human tumors using in situ hybridization.
Cancer Res.
1994;
54
3455-3459
- 107
Pless J, Bauer W, Briner U. et al .
Chemistry and pharmacology of SMS 201-005, a long-acting analog of somatostatin.
Scand J Gastroenterol.
1986;
2
54-64
- 108
Kvols L K, Moertel C G, O'Connel M J. et al .
Treatment of malignant carcinoid syndrome: evaluation of a long-acting somatostatin
analog.
N Engl J Med.
1986;
315
663-666
- 109
Bakker W H, Albert R, Bruns C. et al .
[111In-DTPA-D-Phe1]-octreotide, a potential radiopharmaceutical for imaging of somatostatin
receptor-positive tumors: synthesis, radiolabeling and in vitro validation.
Life Sci.
1991;
49
1583-1591
- 110
Krenning E P, Kwekkeboom D J, Reubi J C. et al .
111In-octreotide scintigraphy in oncology.
Metabolism.
1992;
41
83-86
- 111
Lamberts S WJ, Krenning E P, Reubi J C.
The role of somatostatin and its analogs in the diagnosis and treatment of tumors.
Endocrine Rev.
1991;
19
450-482
- 112
Pallela V R, Thakur M L, Chakder S, Rattan S.
99mTc-labeled vasoactive intestinal peptide receptor agonist: functional studies.
J Nucl Med.
1999;
40
352-360
- 113
Raderer M, Kurtaran A, Yang Q. et al .
Iodine-123-vasoactive intestinal peptide receptor scanning in patients with pancreatic
cancer.
J Nucl Med.
1998;
39
1570-1575
- 114
Virgolini I, Raderer M, Kurtaran A. et al .
Vasoactive intestinal peptide-receptor imaging for the localization of intestinal
adenocarcinomas and endocrine tumors.
N Engl J Med.
1994;
331
1116-1121
- 115
Behr T M, Jenner N, Radetzky S, Behe M, Gratz S, Yucekent S, Raue F, Becker W.
Targeting of cholecystokinin-B/gastrin receptors in vivo: preclinical and initial
clinical evaluation of the diagnostic and therapeutic potential of radiolabelled gastrin.
Eur J Nucl Med.
1998;
25
424-430
- 116
Breeman W A, Hofland L J, de Jong M. et al .
Evaluation of radiolabelled bombesin analogues for receptor-targeted scintigraphy
and radiotherapy.
Int J Cancer.
1999;
81
658-665
- 117
Rogers B E, Rosenfeld M E, Khazaeli M B. et al .
Localization of iodine-125-mIP-Des-Met14-bombesin (7-13)NH2 in ovarian carcinoma induced
to express the gastrin releasing peptide receptor by adenoviral vector-mediated gene
transfer.
J Nucl Med.
1997;
38
1221-1229
- 118
Yamada K M.
Adhesive recognition sequences.
J Biol Chem.
1991;
266
12809-12812
- 119
Humphries M J, Yamada K M, Olden K.
Investigation of the biological effects of anti-cell adhesive synthetic peptides that
inhibit experimental metastasis of B16-F10 murine melanoma cells.
J Clin Invest.
1988;
81
782-790
- 120
Nowlin D M, Gorcsan F, Moscinski M. et al .
A novel cyclic pentapeptide inhibits alpha 4 beta 1 and alpha 5 beta 1 integrin-mediated
cell adhesion.
J Biol Chem.
1993;
268
20352-20359
- 121
Haubner R, Wester H J, Reuning U. et al .
Radiolabeled alpha(v)beta3 integrin antagonists: a new class of tracers for tumor
targeting.
J Nucl Med.
1999;
40
1061-1071
- 122
Haubner R, Wester H J, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman S L,
Kessler H, Schwaiger M.
Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis
imaging with improved biokinetics.
J Nucl Med.
2001;
42
326-336
- 123
Haubner R, Wester H J, Weber W A. et al .
Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography.
Cancer Res.
2001;
61
1781-1785
- 124
Pasqualini R, Koivunen E, Ruoslahti E.
Alpha v integrins as receptors for tumor targeting by circulating ligands.
Nat Biotechnol.
1997;
15
542-546
- 125
Arap W, Pasqualini R, Ruoslahti E.
Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model.
Science.
1998;
279
377-380
- 126
Zitzmann S, Mier W, Schad A, Kinscherf R, Askoxylakis V, Krämer S, Altmann A, Eisenhut M,
Haberkorn U.
A new prostate carcinoma binding peptide (DUP-1) for tumor imaging and therapy.
Clin Cancer Research.
im Druck;
- 127
Zitzmann S, Krämer S, Mier W, Mahmut M, Fleig J, Altmann A, Eisenhut M, Haberkorn U.
Identification of a new prostate specific cyclic peptide with the bacterial FLITRX
system.
J Nucl Med.
im Druck;
- 128
Haberkorn U, Altmann A, Eisenhut M.
Functional genomics and proteomics - the role of nuclear medicine.
Eur J Nuc Med.
2002;
29
115-132
Prof. Dr. Uwe Haberkorn
Radiologische Univ.-Klinik
Im Neuenheimer Feld 400
69120 Heidelberg
Phone: +49/62 21/56 77 31
Fax: +49/2 21/56 54 73
Email: Uwe.Haberkorn@med.uni-heidelberg.de