Zusammenfassung
Studienziel: Ziel der tierexperimentellen Untersuchung ist die Klärung der Fragestellung, ob und
inwieweit das vordere und das hintere Kreuzband über ein sensomotorisches Potenzial
verfügen und somit neben der biomechanisch-ligamentären Stabilisierung über einen
ligamentomuskulären Reflexbogen direkt an der dynamisch-muskulären Gelenkstabilisation
beteiligt sind. Zusätzlich wird die klinisch relevante Fragestellung untersucht, inwieweit
ligamentäre Verletzungen dieses sensomotorische Potenzial beeinflussen und damit zur
Störung der Gelenkfunktion führen. Methode: Insgesamt wurden 24 Kniegelenke anästhesierter Schwarzkopfschafe im In-vivo-Versuch
getestet. Es erfolgte die definierte, mechanische Belastung der Kreuzbänder mit simultaner,
elektromyographischer Ableitung über der ischiokruralen- und Quadrizepsmuskulatur,
die ligamentäre Verletzung wurde durch eine sukzessive Ligamentelongation bis zur
Ruptur simuliert. Ergebnisse: Die Ergebnisse bestätigen die Hypothese der Existenz eines ligamentomuskulären Reflexbogens
zwischen ligamentären Mechanorezeptoren und gelenkstabilisierender Muskulatur. Die
Belastung des VKB initiierte eine Aktivierung der agonistisch wirksamen ischiokruralen
Muskulatur, wohingegen die Belastung des HKB zu einer Aktivierung der Quadrizepsmuskulatur
führte. Die Simulation der Bandverletzung zeigte, dass das sensomotorische Potenzial
der Kreuzbänder bereits bei Dehnungsraten deutlich unterhalb der Bandruptur signifikant
gestört wurde. Schlussfolgerung: Die Kreuzbänder sind über einen ligamentomuskulären Reflexbogen direkt an der dynamischen
Gelenkstabilisation beteiligt. Das sensomotorische Potenzial dieser Strukturen ist
erheblich verletzungsanfälliger als deren biomechanische Integrität.
Abstract
Aim: This neurophysiological study is intended to investigate the sensomotoric potential
of the anterior cruciate ligament (ACL) and the posterior cruciate ligament (PCL)
which may provide joint stabilization via a ligamentomuscular reflex arch. In addition,
the role of ligamentous injury on the sensomotoric potential has been investigated.
Method: The sensomotoric potential was investigated using 24 knee joints in a sheep model
under in-vivo conditions. The cruciate ligaments were mechanically loaded and the
muscular activities of the hamstrings and the quadriceps were recorded simultaneously
via electromyography. Injury to the ligaments was simulated by defined mechanical
elongation of the ACL and PCL to failure. Results: The results confirm the hypothesis of the existence of a ligamentomuscular reflex
loop between ligamentary mechanoreceptors and the joint-stabilizing muscles. Mechanical
loading of the ACL triggered mainly the activity of the hamstrings, whereas loading
of the PCL led to the activation of the quadriceps. The rate of elongation which caused
disturbances to the sensomotric potential was significantly smaller as compared to
the elongation to failure. Conclusion: The cruciate ligaments provide dynamic joint stabilization via a ligamentomuscular
reflex arch. It was demonstrated that the sensomotoric potential of both structures
is significantly more susceptible to ligament injury than the biomechanical potential.
Schlüsselwörter
sensomotorisches System - vorderes Kreuzband - hinteres Kreuzband - Propriozeption
- Bandverletzung
Key words
sensomotoric system - anterior cruciate ligament - posterior cruciate ligament - proprioception
- ligament injury
Literatur
1
Barrett D S.
Proprioception and function after anterior cruciate reconstruction.
J Bone Joint Surg [Br].
1991;
5
833-837
2 Fremerey R, Lobenhoffer P, Zeichen J, Skutek M, Bosch U. Proprioception after rehabilitation
and reconstruction in anterior cruciate ligament deficient knees. J Bone Joint Surg
[Br] 2000; 801-806
3
Kaplan F S, Nixon J E, Reitz M, Rindfleisch L, Tucker J.
Age-related changes in joint proprioception and sensation of joint position.
Acta Orthop Scand.
1985;
1
72-74
4
Solomonow M, Barratta R, Zhou B H, Shoji H, Bose W, Beck C, D'Ambrosia R.
The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining
joint stability.
Am J Sports Med.
1987;
3
207-213
5 Andrew B L, Dodt E. The development of sensory nerve endings at the knee joint of
the cat. Acta Physiol Scand 1954; 287-296
6
Boyd I A.
The histological structure of the receptors in the knee joint of the cat correlated
with their physiological response.
J Physiol.
1954;
124 (3)
476-488
7
Schultz R A, Miller D C, Kerr C S, Micheli L.
Mechanoreceptors in human cruciate ligaments. A histological study.
J Bone Joint Surg [Am].
1984;
7
1072-1076
8
McCloskey D I.
Differences between the senses of movement and position shown by the effects of loading
and vibration of muscle in man.
Brain Res.
1973;
61
119-131
9 Nieuwenhuys R, Voogd J, Huijzen C. The human central nervous system. 3rd ed. Springer,
Berlin, Heidelberg, New York, Tokyo 1988
10
Biedert R M, Stauffer E, Friedrich N F.
Occurence of free nerve endings in the soft tissue of the joint. A histological investigation.
Am J Sports Med.
1992;
4
430-433
11
Clark F J, Burgess R C.
Slowly adapting receptors in cat knee joint: can they signal joint angle?.
J Neurophysiol.
1975;
6
1448-1463
12
Grigg P, Hoffman A H, Fogarty K E.
Properties of Ruffini afferents revealed by stress analysis of isolated section of
cat knee capsule.
J Neurophysiol.
1982;
6
41-54
13 Guyton A C. Textbook of Medical Physiology. 7th ed., WB Saunders, Philadelphia
1986
14
Jankowska E.
Interneuronal relay in spinal pathways from proprioceptors.
Proc Neurobiol.
1992;
38 (4)
335-378
15
Johansson H, Sjölander P, Sojka P.
Receptors in the knee joint ligaments and their role in the biomechanics of the joint.
Crit Rev Biomed Eng.
1991;
18 (5)
341-368
16
Raunest J, Sager M, Bürgener E.
Proprioceptive mechanisms in the cruciate ligaments: An electromyographic study on
reflex activity in the thigh muscles.
J Trauma.
1996;
3
488-493
17
Winter D A, Yack H J.
EMG profiles during normal walking: stride-to-stride and inter-subject variability.
Electroencephalogr Clin Neurophysiol.
1987;
5
402-411
18 Claes L. Biomechanische Eigenschaften humaner Bänder. In: Burri C, Claes L (eds).
Alloplastischer Bandersatz. Hans Huber, Bern, Stuttgart, Wien 1983
19
Johansson H, Sjölander P, Sojka P.
A sensory role for the cruciate ligaments.
Clin Orthop.
1991;
268
161-178
20
Zimny M L.
Mechanoreceptors in articular tissues.
Am J Anat.
1988;
182
16-32
21
Grüber J, Wolter D, Lierse W.
Der vordere Kreuzbandreflex (LCA-Reflex).
Unfallchirurg.
1986;
12
551-554
22
Fujita I, Nishikawa T, Kambic H E, Andrish J T, Grabiner M D.
Characterization of hamstring reflexes during anterior cruciate ligament disruption:
in vivo results from a goat model.
J Orthop Res.
2000;
2
183-189
23
Johansson H, Sjolander P, Sojka P.
Activity in receptor afferents from the anterior cruciate ligament evokes reflex effects
on fusimotor neurones.
Neurosci Res.
1990;
1
54-59
24
Petersen I, Stener B.
Experimental evaluation of the hypothesis of ligament-muscular protective reflexes
- part II.
Acta Physiol Scand.
1959;
48
51
25
Taylor R G, Abresch R T, Lieberman J S, Fowler W M, Portwood M M.
Effect of pentobarbital on contractility of mouse skeletal muscle.
Exp Neurol.
1984;
2
254-263
26
Somjen G, Carpenter D, Henneman E.
Selective depression of alpha motoneurons of small size by ether.
J Pharmacol Exp Ther.
1965;
148
380
27 Johansson H, Sjölander P, Sojka P. Reflex actions on the χ-muscle spindle system
of muscles acting at the knee joint elicited by stretch of the posterior cruciate
ligament. Neuroorthopedics 1989; 9
28
Biedert R M, Zwick E B.
Ligament-muscle reflex arc after anterior cruciate ligament reconstruction: Electromyographic
evaluation.
Arch Orthop Trauma Surg.
1998;
1-2
81-84
29
Kennedy J C, Alexander I J, Hayes K C.
Nerve supply of the human knee and its functional importance.
Am J Sports Med.
1982;
6
329-335
30 Shoemaker S C, Daniel D M. The Limits of Knee Motion. In: Daniel D, Akeson W, O'Connor
J (eds). Knee Ligaments-Structure, Function, Injury, and Repair. Ravenpress, New York
1990
31
Jarvinen M, Kannus P, Johnson R J.
How to treat knee ligament injuries?.
Ann Chir Gynaecol.
1991;
80
134-140
PD Dr. med. R. Fremerey
Unfallchirurgische Klinik · Klinikum Hildesheim GmbH
Weinberg 1
31141 Hildesheim
Phone: 0 51 21/89 45 56
Fax: 0 51 21/89 45 97
Email: ReinhardFremerey@t-online.de