Zusammenfassung
Aktuelle bildgebende Untersuchungsmethoden der Lunge konzentrieren sich auf die Darstellung
der Morphologie bzw. des Parenchyms dieses Organs. Hierbei kommt die Computertomographie
zum Einsatz, sobald eine subtilere Diagnostik als eine konventionelle Röntgen-Übersichtsaufnahme
gebraucht wird. Funktionelle Informationen zeigt die Computertomographie jedoch nur
eingeschränkt auf. Diese Informationen werden aus der Blutgasanalyse, der Spirometrie
und der Ganzkörper-Plethysmographie gewonnen. Alle diese Verfahren haben jedoch den
Nachteil, keinerlei regionale Zuordnungen von Pathologien zu erlauben. Die Magnetresonanztomographie
der Lunge hat erhebliche Fortschritte durch die Nutzung von hyperpolarisiertem ³Helium
als gasförmiges „Kontrastmittel” erfahren. Mit diesem Kontrastmechanismus können funktionelle
Informationen mit örtlicher Zuordnung gewonnen werden. Zudem bietet die Methode eine
hohe örtliche und zeitliche Auflösung und bringt keine Belastung durch ionisierende
Strahlen mit sich. Limitierungen der Methode liegen derzeit bei eher hohen Kosten
und einer eingeschränkten Verfügbarkeit. Dieser Übersichtsartikel soll einerseits
die Methodik der Magnetresonanztomographie der menschlichen Lunge mittels hyperpolarisiertem
³Helium beleuchten, andererseits den derzeitigen Stand der Kenntnis der Methode unter
besonderer Berücksichtigung der Neuerungen der letzten Zeit aufzeigen.
Abstract
Current imaging methods of the lung concentrate on morphology as well as on the depiction
of the pulmonary parenchyma. The need of an advanced and more subtle imaging technology
compared to conventional radiography is met by computed topography as the method of
choice. Nevertheless, computed tomography yields very limited functional information.
This is to be derived from arterial blood gas analysis, spirometry and body plethysmography.
These methods, however, lack the scope for regional allocation of any pathology. Magnetic
resonance imaging of the lung has been advanced by the use of hyperpolarised ³Helium
as an inhaled gaseous contrast agent. The inhalation of the gas provides functional
data by distribution, diffusion and relaxation of its hyperpolarised state. Because
anatomical landmarks of the lung can be visualised as well, functional information
can be linked with regional information. Furthermore, the method provides high spatial
and temporal resolution and lacks the potential side-effects of ionising radiation.
Four different modalities have been established: 1. Spin density imaging studies the
distribution of gas, normally after a single inhalation of contrast gas in inspiratory
breath hold. 2. Dynamic cine imaging studies the distribution of gas with respect
to regional time constants of pulmonary gas inflow. 3. Diffusion weighted imaging
can exhibit the presence and severity of pulmonary airspace enlargement, as in pulmonary
emphysema. 4. Oxygen sensitive imaging displays intrapulmonary oxygen partial pressure
and its distribution. Currently, the method is limited by comparably high costs and
limited availability. As there have been recent developments which might bring this
modality closer to clinical use, this review article will comprise the methodology
as well as the current state of the art and standard of knowledge of magnetic resonance
imaging of the lung using hyperpolarised ³Helium.
Key words
Lung - magnetic resonance imaging - helium - functional imaging - contrast agent
Literatur
1
Bletz C, Markstaller K, Karmrodt J. et al .
Quantifizierung von Atelektasen bei kontrollierter Beatmung: Spiral-CT versus dynamische
Einzelschicht-CT.
Fortschr Röntgenstr.
2004;
176
409-416
2
Suga K.
Technical and analytical advances in pulmonary ventilation SPECT with xenon-133 gas
and Tc-99 m-Technegas.
Ann Nucl Med.
2002;
16
303-310
3
Schuster D.
The evaluation of lung function with PET.
Semin Nucl Med.
1998;
28
341-351
4
van Beek E J, Wild J M, Kauczor H U. et al .
Functional MRI of the lung using hyperpolarized 3-helium gas.
J Magn Reson Imaging.
2004;
20
540-554
5
Fink C, Eichhorn J, Kiessling F. et al .
Zeitlich aufgelöste multiphasische 3D-MR-Angiographie zur Diagnostik des Lungengefäßsystems
bei Kindern.
Fortschr Röntgenstr.
2003;
175
929-935
6
Leutner C, Schild H.
MRT des Lungenparenchyms.
Fortschr Röntgenstr.
2001;
173
168-175
7
Heussel C P, Sandner A, Voigtlaender T. et al .
Prospektive Machbarkeitsstudie zum Vergleich von Röntgenübersichtsaufnahme und Thorax-MRT
in Atemanhaltetechnik am offenen Niederfeldgerät.
Fortschr Röntgenstr.
2002;
174
854-861
8
Biederer J, Reuter M, Both M. et al .
Analysis of artefacts and detail resolution of lung MRI with breath-hold T1-weighted
gradient-echo and T2-weighted fast spin-echo sequences with respiratory triggering.
Eur Radiol.
2002;
12
378-384
9
Ley S, Fink C, Puderbach M. et al .
Kontrastmittelverstärkte 3D-MR-Perfusion der Lunge: Einsatz paralleler Bildgebungstechniken
bei gesunden Probanden.
Fortschr Röntgenstr.
2004;
176
330-334
10
Ohno Y, Sugimura K, Hatabu H.
MR imaging of lung cancer.
Eur J Radiol.
2002;
44
172-181
11
Haage P, Adam G, Karaagac S. et al .
Mechanical delivery of aerosolized gadolinium-DTPA for pulmonary ventilation assessment
in MR imaging.
Invest Radiol.
2001;
36
240-243
12
Ohno Y, Hatabu H, Takenaka D. et al .
Dynamic oxygen-enhanced MRI reflects diffusing capacity of the lung.
Magn Reson Med.
2002;
47
1139-1144
13
Albert M S, Cates G D, Driehuys B. et al .
Biological magnetic resonance imaging using laser-polarized 129 Xe.
Nature.
1994;
370
199-201
14
Altes T A, De Lange E E.
Applications of hyperpolarized helium-3 gas magnetic resonance imaging in pediatric
lung disease.
Top Magn Reson Imaging.
2003;
14
231-236
15
Gast K K, Zaporozhan J, Ley S. et al .
³He-MRI in follow-up of lung transplant recipients.
Eur Radiol.
2004;
14
78-85
16
Moeller H E, Chen X J, Saam B. et al .
MRI of the lungs using hyperpolarized noble Gases.
Magn Reson Med.
2002;
47
1029-1051
17
Rizi R R, Lipson D A, Dimitrov I E. et al .
Operating characteristics of hyperpolarized 3He and arterial spin tagging in MR imaging
of ventilation and perfusion in healthy subjects.
Acad Radiol.
2003;
10
502-508
18
Rodrigo G, Pollack C, Rodrigo C. et al .
Heliox for treatment of exacerbations of chronic obstructive pulmonary disease (Cochrane
Review).
Cochrane Database Syst Rev.
2002;
2
CD003571
19
Colegrove F D, Schearer L D, Walters K.
Polarization of ³He gas by optical pumping.
Physiol Rev.
1963;
132
2561-2572
20
Otten E W.
„Take a breath of polarized noble gas”.
Europhysics News.
2004;
35
16-20
21
van Beek E J, Schmiedeskamp J, Wild J M. et al .
Hyperpolarized 3-helium MR imaging of the lungs: testing the concept of a central
production facility.
Eur Radiol.
2003;
13
2583-2586
22
Eberle B, Markstaller K, Stepniak A. et al .
3Helium-MRI-Based Assessment of regional gas exchange impairment during experimental
pulmonary artery occlusion.
Anesthesiology.
2002;
96
A1309
23
Viallon M, Berthezene Y, Callot V. et al .
Dynamic imaging of hyperpolarized (3)He distribution in rat lungs using interleaved-spiral
scans.
NMR Biomed.
2000;
13
207-213
24
Gierada D S, Saam B, Yablonskiy D. et al .
Dynamic echo planar MR imaging of lung ventilation with hyperpolarized (3)He in normal
subjects and patients with severe emphysema.
NMR Biomed.
2000;
13
176-181
25
Gast K K, Ley S, Zaporozhan J. et al .
Reformatierungen als Lösungsansatz für die Problematik der unterschiedlichen Schichtführung
beim Vergleich von ³He-MRT und HR-CT der Lunge.
Fortschr Röntgenstr.
2003;
175
786-790
26
Peces-Barba G, Ruiz-Cabello J, Cremillieux Y. et al .
Helium-3 MRI diffusion coefficient: correlation to morphometry in a model of mild
emphysema.
Eur Respir J.
2003;
22
14-19
27
Salerno M, Altes T A, Brookeman J R. et al .
Rapid hyperpolarized 3He diffusion MRI of healthy and emphysematous human lungs using
an optimized interleaved-spiral pulse sequence.
J Magn Reson Imaging.
2003;
17
581-588
28
Fichele S, Paley M N, Woodhouse N. et al .
Investigating 3He diffusion NMR in the lungs using finite difference simulations and
in vivo PGSE experiments.
J Magn Reson.
2004;
167
1-11
29
Ley S, Zaporozhan J, Morbach A. et al .
Functional Evaluation of Emphysema Using Diffusion-weighted 3Helium-Magnetic Resonance
Imaging, High-Resolution Computed Tomography, and Lung Function Tests.
Invest Radiol.
2004;
39
427-434
30
Deninger A J, Eberle B, Ebert M. et al .
Quantification of regional intrapulmonary oxygen partial pressure evolution during
apnea by (3)He MRI.
J Magn Reson Imag.
1999;
141
207-216
31
Lipson D, Fischer M C, Gefter W. et al .
Human Imaging of Ventilation-Perfusion Ratios Using Hyperpolarized Helium-3 MRI: Preliminary
Results.
Proc Intl Soc Mag Reson Med.
2004;
12
763
32
Deninger A J, Eberle B, Ebert M. et al .
(3)he-MRI-based measurements of intrapulmonary p(O2) and its time course during apnea
in healthy volunteers: first results, reproducibility, and technical limitations.
NMR Biomed.
2000;
13
194-201
33
Deninger A, Eberle B, Bermuth J. et al .
Assessment of a single-acquisition imaging sequence for oxygen-sensitive 3He MRI.
Magn Reson Med.
2002;
47
105-114
34
Lehmann F, Eberle B, Markstaller K. et al .
Ein Auswerteprogramm zur quantitativen Analyse von Messungen des alveolären Sauerstoffpartialdrucks
(pAO2) mit der sauerstoffsensitiven 3He-MR-Tomographie.
Fortschr Röntgenstr.
2004;
176
1390-1398
35
Gast K K, Puderbach M, Rodriguez I. et al .
Distribution of Ventilation in Lung transplant recipients: Evaluation by Dynamic ³He-MRI
with lung motion correction.
Invest Radiol.
2003;
38
341-348
36
Salerno M, Altes T A, Brookeman J R. et al .
Dynamic Spiral MRI of Pulmonary Gas Flow using Hyperpolarized ³He: Preliminary Studies
in Healthy and Diseased Lungs.
Magn Reson Med.
2001;
46
667-677
37
Lehmann F, Knitz F, Weiler N. et al .
Quantitative Untersuchung der Lungenventilation mittels dynamischer MRT von hochpolarisiertem
Helium-3.
Fortschr Röntgenstr.
2004;
176
1399-1408
38
Ebert M, Grossmann T, Heil W. et al .
Nuclear magnetic resonance imaging with hyperpolarised helium-3.
Lancet.
1996;
347
1297-1299
39
Mata J, Altes T, Christopher J. et al .
Transient, position-dependent ventilation defects of the lung in healthy volunteers:
demonstration with hyperpolarized helium-3 MR imaging.
Proc Intl Soc Mag Reson Med.
2002;
10
2027
40
Kauczor H U, Hast J, Heussel C. et al .
Focal airtrapping at expiratory high-resolution CT: comparison with pulmonary function
tests.
Eur Radiol.
2000;
10
1539-1546
41
Guenther D, Eberle B, Hast J. et al .
(3)He MRI in healthy volunteers: preliminary correlation with smoking history and
lung volumes.
NMR Biomed.
2000;
13
182-189
42
Altes T, Powers P, Knight-Scott J. et al .
Hyperpolarized 3He MR Lung Ventilation Imaging in Asthmatics: Preliminary Findings.
J Magn Reson Imag.
2001;
13
378-384
43
Samee S, Altes T, Powers P. et al .
Imaging the lungs in asthmatic patients by using hyperpolarized helium-3 magnetic
resonance: assessment of response to methacholine and exercise challenge.
J Allergy Clin Immunol.
2003;
111
1205-1211
44
Kauczor H U, Ebert M, Kreitner K F. et al .
Imaging of the lungs using 3He MRI: preliminary clinical experience in 18 patients
with and without lung disease.
J Magn Reson Imaging.
1997;
7
538-543
45
Herber S, Lill J, Heussel C P. et al .
Akute oder chronische Transplantat-Abstoßung? - HRCT des Thorax bei Patienten nach
Lungentransplantation.
Fortschr Röntgenstr.
2001;
173
822-829
46
Gast K K, Viallon M, Eberle B. et al .
MR Imaging in lung transplant recipients using hyperpolarized 3He: comparison with
CT.
J Magn Reson Imag.
2002;
15
268-274
47
Collins J, Muller N L, Kazerooni E A. et al .
CT findings of pneumonia after lung transplantation.
Am J Roentgenol.
2000;
175
811-818
48
Lee E S, Gotway M B, Reddy G P. et al .
Early bronchiolitis obliterans following lung transplantation: accuracy of expiratory
thin-section CT for diagnosis.
Radiology.
2000;
216
472-477
49
McAdams H P, Palmer S M, Donnelly L F. et al .
Hyperpolarized 3He-enhanced MR imaging of lung transplant recipients: preliminary
results.
Am J Roentgenol.
1999;
173
955-959
50
Kauczor H U, Markstaller K, Puderbach M. et al .
Volumetry of ventilated airspaces using ³He MRI.
Invest Radiol.
2001;
36
110-114
51
Markstaller K, Kauczor H U, Puderbach M. et al .
3He-MRI-based vs. conventional determination of lung volumes in patients after unilateral
lung transplantation: a new approach to regional spirometry.
Acta Anaesthesiol Scand.
2002;
46
845-852
52
Zaporozhan J, Ley S, Gast K K. et al .
Functional analysis in single-lung transplant recipients: a comparative study of high-resolution
CT, 3He-MRI, and pulmonary function tests.
Chest.
2004;
125
173-181
53
Saam B, Yablonskiy D, Kodibagkar V. et al .
MR imaging of diffusion of 3He gas in healthy and diseased lungs.
Magn Reson Med.
2000;
44
174-179
54
Morbach A E, Gast K K, Schmiedeskamp J. et al .
Diffusion Weighted MR-Imaging of the Lung with Hyperpolarized Helium-3. A Study of
Reproducibility.
J Magn Reson Imag (eingereicht).
55
Bink A, Hanisch G, Vogel A. et al .
Clinical Aspects of the Apparent Diffusion Coefficient in ³He MRI: Results in Healthy
Volunteers and Patients after Lung Transplantation.
J Magn Reson Imag (submitted).
56
Fichele S, Woodhouse N, Swift A J. et al .
MRI of helium-3 gas in healthy lungs: posture related variations of alveolar size.
J Magn Reson Imaging.
2004;
20
331-335
57
Hanisch G, Schreiber W, Diergarten T. et al .
Investigation of intrapulmonary diffusion by 3He MRI.
Eur Radiol.
2000;
10
S345
58
Eberle B, Markstaller K, Lill J. et al .
Oxygen-sensitive 3He Magnetic Resonance Imaging of the Lungs in Patients after Unilateral
Lung Transplantation.
Am J Resp Crit Care Med.
2000;
161
A718
59
Gast K K, Puderbach M U, Rodriguez I. et al .
Dynamic ventilation ³He-MRI with lung motion correction: Gas flow distribution analysis.
Invest Radiol.
2002;
37
126-134
60
Panth S R, Fain S B, Holmes J H. et al .
Assessment of Lung Ventilation, Gas Trapping and Pulmonary Perfusion in patients with
Asthma during Inhaled Corticosteroid Withdrawal.
Proc Intl Soc Mag Reson Med.
2004;
12
764
Klaus Kurt Gast
Klinik mit Poliklinik für Radiologie, Klinikum der Johannes Gutenberg-Universität
Langenbeckstraße 1
55131 Mainz
Phone: 0 61 31/17 65 32
Fax: 0 61 31/17 34 23
Email: kgast@radiologie.klinik.uni-mainz.de