Zusammenfassung
Die systemische Sklerose (SSc) ist eine seltene, komplexe Multisystemerkrankung, die
durch eine gesteigerte Ablagerung von Bindegewebe in der Haut und in verschiedenen
Organen gekennzeichnet ist. Wie bei anderen Erkrankungen aus der Gruppe der Kollagenosen
ist auch die Ätiologie der SSc unbekannt. Ebenso sind die genauen Mechanismen, die
in den Krankheitsverlauf involviert sind, noch weitgehend unklar. Klinisch und pathogenetisch
stehen drei grundlegende Prozesse im Vordergrund: 1) die exzessive Akkumulation von
Kollagen und anderen Komponenten der Extrazellulärmatrix, 2) frühe morphologische
Veränderungen der kleinen Blutgefässe und 3) Störungen der zellulären und humoralen
Immunantwort, die mit dem Auftreten von zum Teil krankheitsspezifischen Antikörpern
einhergehen. Zum jetzigen Zeitpunkt ist unklar, wie diese drei Prozesse interagieren
und letztlich zum progressiven Fortschreiten einer generalisierten Fibrose führen.
In Bezug auf die einzelnen Mechanismen jedoch hat die Forschung der letzten Jahre
auf molekularer Ebene markante Fortschritte erzielt, die auch das Spektrum für neue
therapeutische Ansätze erweitern.
Abstract
Systemic sclerosis (SSc) is an uncommon, complex, multisystemic disorder, characterized
by severe fibrosis of the skin and various internal organs. As in other collagenoses,
the etiology of SSc is unknown and the exact mechanisms involved in the pathogenesis
are not well understood. For the clinical and pathogenetic manifestations, however,
the following key processes have been identified: 1) excessive accumulation of collagen
and other components of the extracellular matrix; 2) early morphological changes in
small blood vessels; and 3) alterations in the cellular and humoral immune response
resulting in the production of disease-specific antibodies. Currently, it remains
unclear how these processes interact, to cause a chronic and progressive fibrotic
disease. Continued research, has however yielded substantial insight into the molecular
understanding of several basic mechanisms, suggesting novel therapeutic targets for
the future.
Schlüsselwörter
Systemische Sklerose - Gewebsfibrose - Gefässveränderungen - Autoantikörper - Zelluläre
Immunveränderungen - Regeneration von Kollagen-Genen
Key words
Systemic sclerosis - fibrosis - angiogeneris - autoantibodies - cellular immunity
- regulation of collagen genes
Literatur
1 Cassirer R. Die vasomotorisch-trophischen Neurosen. Berlin; S. Karger 1912
2
Ostendorf B, Maiburg B, Schneider M.
Scleroderma and Paul Klee: Metamorphosis of life and art?.
Z Rheumatol.
2004;
31
318-325
3
Varga J.
Illness and art: the legacy of Paul Klee.
Curr Opin Rheumatol.
2004;
31
714-717
4
Klemperer P, Pollak A, Baehr G.
Diffuse collagen disease. Acute disseminated lupus erythematodes and diffuse scleroderma.
JAMA.
1942;
31
331-332
5
Jimenez S A, Hitraya E, Varga J.
Pathogenesis of scleroderma. Collagen.
Rheum Dis Clin North Am.
1996;
31
647-674
6
Maul G G, Jimenez S A, Riggs E. et al .
Determination of an epitope of the diffuse systemic sclerosis marker antigen DNA topoisomerase
I: sequence similarity with retroviral p30gag protein suggests a possible cause for
autoimmunity in systemic sclerosis.
Proc Natl Acad Sci USA.
1989;
31
8492-8496
7
Dang H, Dauphinee M J, Talal N. et al .
Serum antibody to retroviral gag proteins in systemic sclerosis.
Arthritis Rheum.
1991;
31
1336-1337
8
Lunardi C, Bason C, Navone R. et al .
Systemic sclerosis immunoglobulin G autoantibodies bind the human cytomegalovirus
late protein UL94 and induce apoptosis in human endothelial cells.
Nat Med.
2000;
31
1183-1186
9
Newkirk M M, van Venrooij W J, Marshall G S.
Autoimmune response to U1 small nuclear ribonucleoprotein (U1 snRNP) associated with
cytomegalovirus infection.
Arthritis Res.
2001;
31
253-258
10
Neidhart M, Kuchen S, Distler O. et al .
Increased serum levels of antibodies against human cytomegalovirus and prevalence
of autoantibodies in systemic sclerosis.
Arthritis Rheum.
1999;
31
389-392
11
Arnett F C, Cho M, Chatterjee S. et al .
Familial occurrence frequencies and relative risks for systemic sclerosis (scleroderma)
in three United States cohorts.
Arthritis Rheum.
2001;
31
1359-1362
12
Feghali C A, Wright T M.
Epidemiologic and clinical study of twins with scleroderma.
Arthritis and Rheum.
1995;
31
13
Mayes M D, Lacey J V Jr, Beebe-Dimmer J. et al .
Prevalence, incidence, survival, and disease characteristics of systemic sclerosis
in a large US population.
Arthritis Rheum.
2003;
31
2246-2255
14
McNeilage L J, Youngchaiyud U, Whittingham S.
Racial differences in antinuclear antibody patterns and clinical manifestations of
scleroderma.
Arthritis Rheum.
1989;
31
54-60
15
Johnson R W, Tew M B, Arnett F C.
The genetics of systemic sclerosis.
Curr Rheumatol Rep.
2002;
31
99-107
16
Reveille J D.
Molecular genetics of systemic sclerosis.
Curr Opin Rheumatol.
1995;
31
522-8
17
Jimenez S A, Artlett C M.
Microchimerism and systemic sclerosis.
Curr Opin Rheumatol.
2005;
31
86-90
18
Lambert N C, Pang J M, Yan Z. et al .
Male microchimerism in women with systemic sclerosis and healthy women who have never
given birth to a son.
Ann Rheum Dis.
2005;
31
845-848
19
Artlett C M, Smith J B, Jimenez S A.
Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis.
N Engl J Med.
1998;
31
1186-1191
20
Nelson J L, Furst D E, Maloney S. et al .
Microchimerism and HLA-compatible relationships of pregnancy in scleroderma.
Lancet.
1998;
31
559-562
21
Sawaya H H, Jimenez S A, Artlett C M.
Quantification of fetal microchimeric cells in clinically affected and unaffected
skin of patients with systemic sclerosis.
Rheumatology.
2004;
31
965-968
22
Scaletti C, Vultaggio A, Bonifacio S. et al .
Th2-oriented profile of male offspring T cells present in women with systemic sclerosis
and reactive with maternal major histocompatibility complex antigens.
Arthritis Rheum.
2002;
31
445-450
23
Christner P J, Artlett C M, Conway R F. et al .
Increased numbers of microchimeric cells of fetal origin are associated with dermal
fibrosis in mice following injection of vinyl chloride.
Arthritis Rheum.
2000;
31
2598-2605
24
Okano Y.
Antinuclear antibody in systemic sclerosis (scleroderma).
Rheum Dis Clin North Am.
1996;
31
709-735
25
Casciola-Rosen L, Wigley F, Rosen A.
Scleroderma autoantigens are uniquely fragmented by metal-catalyzed oxidation reactions:
implications for pathogenesis.
J Exp Med.
1997;
31
71-79
26
Chizzolini C, Raschi E, Rezzonico R. et al .
Autoantibodies to fibroblasts induce a proadhesive and proinflammatory fibroblast
phenotype in patients with systemic sclerosis.
Arthritis Rheum.
2002;
31
1602-1613
27
Roumm A D, Whiteside T L, Medsger T A Jr. et al .
Lymphocytes in the skin of patients with progressive systemic sclerosis. Quantification,
subtyping, and clinical correlations.
Arthritis Rheum.
1984;
31
645-653
28
Hawkins R A, Claman H N, Clark R A. et al .
Increased dermal mast cell populations in progressive systemic sclerosis: a link in
chronic fibrosis?.
Ann Intern Med.
1985;
31
182-186
29
Kraling B M, Maul G G, Jimenez S A.
Mononuclear cellular infiltrates in clinically involved skin from patients with systemic
sclerosis of recent onset predominantly consist of monocytes/macrophages.
Pathobiology.
1995;
31
48-56
30
Kalogerou A, Gelou E, Mountantonakis S. et al .
Early T cell activation in the skin from patients with systemic sclerosis.
Ann Rheum Dis.
2005;
31
1233-1235
31
Sakkas L I, Platsoucas C D.
Is systemic sclerosis an antigen-driven T cell disease?.
Arthritis Rheum.
2004;
31
1721-1733
32
White B.
Immunopathogenesis of systemic sclerosis.
Rheum Dis Clin North Am.
1996;
31
695-708
33
Sakkas L I, Xu B, Artlett C M. et al .
Oligoclonal T cell expansion in the skin of patients with systemic sclerosis.
J Immunol.
2002;
31
3649-3659
34
Yurovsky V V, Wigley F M, Wise R A. et al .
Skewing of the CD8 + T-cell repertoire in the lungs of patients with systemic sclerosis.
Hum Immunol.
1996;
31
84-97
35
Distler J HW, Jüngel A, Caretto D. et al .
MCP-1 released from glycosaminoglycans mediates its profibrotic effects in systemic
sclerosis via the release of interleukin-4 from T-cells.
Arthritis Rheum.
2006;
31
214-225
36
Seibold J R, Giorno R C, Claman H N.
Dermal mast cell degranulation in systemic sclerosis.
Arthritis Rheum.
1990;
31
1702-1709
37
Claman H N.
On scleroderma. Mast cells, endothelial cells, and fibroblasts.
Jama.
1989;
31
1206-1209
38
Wang H W, Tedla N, Hunt J E. et al .
Mast cell accumulation and cytokine expression in the tight skin mouse model of scleroderma.
Exp Dermatol.
2005;
31
295-302
39
Yamamoto T, Eckes B, Hartmann K. et al .
Expression of monocyte chemoattractant protein-1 in the lesional skin of systemic
sclerosis.
J Dermatol Sci.
2001;
31
133-139
40
Everett E T, Pablos J L, Harley R A. et al .
The role of mast cells in the development of skin fibrosis in tight-skin mutant mice.
Comp Biochem Physiol A Physiol.
1995;
31
159-165
41
Cairns J A, Walls A F.
Mast cell tryptase stimulates the synthesis of type I collagen in human lung fibroblasts.
J Clin Invest.
1997;
31
1313-1321
42
Gruber B L, Kew R R, Jelaska A. et al .
Human mast cells activate fibroblasts: tryptase is a fibrogenic factor stimulating
collagen messenger ribonucleic acid synthesis and fibroblast chemotaxis.
J Immunol.
1997;
31
2310-2317
43
Lindstedt K A, Wang Y, Shiota N. et al .
Activation of paracrine TGF-beta1 signaling upon stimulation and degranulation of
rat serosal mast cells: a novel function for chymase.
Faseb J.
2001;
31
1377-1388
44
Walker M, Harley R, LeRoy E C.
Ketotifen prevents skin fibrosis in the tight skin mouse.
J Rheumatol.
1990;
31
57-59
45
Gruber B L, Kaufman L D.
A double-blind randomized controlled trial of ketotifen versus placebo in early diffuse
scleroderma.
Arthritis Rheum.
1991;
31
362-366
46
Ishikawa O, Ishikawa H.
Macrophage infiltration in the skin of patients with systemic sclerosis.
J Rheumatol.
1992;
31
1202-1206
47
Gay S, Jones R E Jr., Huang G Q. et al .
Immunohistologic demonstration of plateletderived growth factor (PDGF) and sis-oncogene
expression in scleroderma.
J Invest Dermatol.
1989;
31
301-303
48
LeRoy E C, Mercurio S, Sherer G K.
Replication and phenotypic expression of control and scleroderma human fibroblasts:
response to growth factors.
Proc Natl Acad Sci USA.
1982;
31
1286-1290
49
Odoux C, Crestani B, Lebrun G. et al .
IL-1 beta inhibits ET-1 production by ATII cells in vitro: evidence for involvement
of cyclooxygenase 2 pathway.
Am J Physiol.
1997;
31
L193-200
50
Koch A E, Polverini P J, Kunkel S L. et al .
Interleukin-8 as a macrophage-derived mediator of angiogenesis.
Science.
1992;
31
1798-1801
51
Distler O, Distler J H, Kowal-Bielecka O. et al .
Chemokines and chemokine receptors in the pathogenesis of systemic sclerosis.
Mod Rheumatol.
2002;
31
107-112
52
Holcombe R F, Baethge B A, Stewart R M. et al .
Cell surface expression of lysosome-associated membrane proteins (LAMPs) in scleroderma:
relationship of lamp2 to disease duration, anti-Sc170 antibodies, serum interleukin-8,
and soluble interleukin-2 receptor levels.
Clin Immunol Immunopathol.
1993;
31
31-39
53
Reitamo S, Remitz A, Varga J. et al .
Demonstration of interleukin 8 and autoantibodies to interleukin 8 in the serum of
patients with systemic sclerosis and related disorders.
Arch Dermatol.
1993;
31
189-193
54
Southcott A M, Jones K P, Li D. et al .
Interleukin-8. Differential expression in lone fibrosing alveolitis and systemic sclerosis.
Am J Respir Crit Care Med.
1995;
31
1604-1612
55
Hasegawa M, Sato S, Takehara K.
Augmented production of chemokines (monocyte chemotactic protein-1 (MCP-1), macrophage
inflammatory protein-1alpha (MIP-1alpha) and MIP-1beta) in patients with systemic
sclerosis: MCP-1 and MIP-1alpha may be involved in the development of pulmonary fibrosis.
Clin Exp Immunol.
1999;
31
159-165
56
Distler O, Rinkes B, Hohenleutner U. et al .
Expression of RANTES in biopsies of skin and upper gastrointestinal tract from patients
with systemic sclerosis.
Rheumatol Int.
1999;
31
39-46
57
Distler O, Pap T, Kowal-Bielecka O. et al .
Overexpression of monocyte chemoattractant protein 1 in systemic sclerosis: role of
platelet-derived growth factor and effects on monocyte chemotaxis and collagen synthesis.
Arthritis Rheum.
2001;
31
2665-2678
58
Denton C P, Shi-Wen X, Sutton A. et al .
Scleroderma fibroblasts promote migration of mononuclear leucocytes across endothelial
cell monolayers.
Clin Exp Immunol.
1998;
31
293-300
59
Salcedo R, Ponce M L, Young H A. et al .
Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in
angiogenesis and tumor progression.
Blood.
2000;
31
34-40
60
Mavalia C, Scaletti C, Romagnani P. et al .
Type 2 helper T-cell predominance and high CD30 expression in systemic sclerosis.
Am J Pathol.
1997;
31
1751-1758
61
Lloyd C M, Dorf M E, Proudfoot A. et al .
Role of MCP-1 and RANTES in inflammation and progression to fibrosis during murine
crescentic nephritis.
J Leukoc Biol.
1997;
31
676-680
62
LeRoy E C.
Systemic sclerosis. A vascular perspective.
Rheum Dis Clin North Am.
1996;
31
675-694
63
Distler J H, Kalden J R, Gay S. et al .
Vascular changes in the pathogenesis of systemic sclerosis.
Z Rheumatol.
2004;
31
446-450
64
Sgonc R, Gruschwitz M S, Dietrich H. et al .
Endothelial cell apoptosis is a primary pathogenetic event underlying skin lesions
in avian and human scleroderma.
J Clin Invest.
1996;
31
785-792
65
Sgonc R, Gruschwitz M S, Boeck G. et al .
Endothelial cell apoptosis in systemic sclerosis is induced by antibody-dependent
cell-mediated cytotoxicity via CD95.
Arthritis Rheum.
2000;
31
2550-2562
66
Distler O, Distler J H, Scheid A. et al .
Uncontrolled expression of vascular endothelial growth factor and its receptors leads
to insufficient skin angiogenesis in patients with systemic sclerosis.
Circ Res.
2004;
31
109-116
67
Distler O, Neidhart M, Gay R E. et al .
The molecular control of angiogenesis.
Int Rev Immunol.
2002;
31
33-49
68
Distler J H, Hirth A, Kurowska-Stolarska M. et al .
Angiogenic and angiostatic factors in the molecular control of angiogenesis.
Q J Nucl Med.
2003;
31
149-161
69
Distler O, Del Rosso A, Giacomelli R. et al .
Angiogenic and angiostatic factors in systemic sclerosis: increased levels of vascular
endothelial growth factor are a feature of the earliest disease stages and are associated
with the absence of fingertip ulcers.
Arthritis Res.
2002;
31
R11
70
Choi J J, Min D J, Cho M L. et al .
Elevated vascular endothelial growth factor in systemic sclerosis.
J Rheumatol.
2003;
31
1529-1533
71
Dor Y, Djonov V, Abramovitch R. et al .
Conditional switching of VEGF provides new insights into adult neovascularization
and pro-angiogenic therapy.
Embo J.
2002;
31
1939-1947
72
Kuwana M, Okazaki Y, Yasuoka H. et al .
Defective vasculogenesis in systemic sclerosis.
Lancet.
2004;
31
603-610
73
Atamas S P.
Complex cytokine regulation of tissue fibrosis.
Life Sci.
2002;
31
631-643
74
Postlethwaite A E, Shigemitsu H, Kanangat S.
Cellular origins of fibroblasts: possible implications for organ fibrosis in systemic
sclerosis.
Curr Opin Rheumatol.
2004;
31
733-738
75
Leask A, Abraham D J.
TGF-beta signaling and the fibrotic response.
Faseb J.
2004;
31
816-827
76
Clark D A, Coker R.
Transforming growth factor-beta (TGF-beta).
Int J Biochem Cell Biol.
1998;
31
293-298
77
Wrana J L, Attisano L.
The Smad pathway.
Cytokine Growth Factor Rev.
2000;
31
5-13
78
Massague J.
How cells read TGF-beta signals.
Nat Rev Mol Cell Biol.
2000;
31
169-178
79
Mori Y, Chen S J, Varga J.
Expression and regulation of intracellular SMAD signaling in scleroderma skin fibroblasts.
Arthritis Rheum.
2003;
31
1964-1978
80
Varga J.
Scleroderma and Smads: dysfunctional Smad family dynamics culminating in fibrosis.
Arthritis Rheum.
2002;
31
1703-1713
81
Dong C, Zhu S, Wang T. et al .
Deficient Smad7 expression: a putative molecular defect in scleroderma.
Proc Natl Acad Sci USA.
2002;
31
3908-3913
82
Saitta B, Gaidarova S, Cicchillitti L. et al .
CCAAT binding transcription factor binds and regulates human COL1A1 promoter activity
in human dermal fibroblasts: demonstration of increased binding in systemic sclerosis
fibroblasts.
Arthritis Rheum.
2000;
31
2219-2229
83
Tan E M, Rodnan G P, Garcia I. et al .
Diversity of antinuclear antibodies in progressive systemic sclerosis. Anti-centromere
antibody and its relationship to CREST syndrome.
Arthritis Rheum.
1980;
31
617-625
84
Marasini B, Gagetta M, Rossi V. et al .
Rheumatic disorders and primary biliary cirrhosis: an appraisal of 170 Italian patients.
Ann Rheum Dis.
2001;
31
1046-1049
85
Kane G C, Varga J, Conant E F. et al .
Lung involvement in systemic sclerosis (scleroderma): relation to classification based
on extent of skin involvement or autoantibody status.
Resp Med.
1996;
31
223-230
86
Harvey G R, Butts S, Rands A L. et al .
Clinical and serological associations with anti-RNA polymerase antibodies in systemic
sclerosis.
Clin Exp Immunol.
1999;
31
395-402
87
Reveille J D, Solomon D H.
Evidence-based guidelines for the use of immunologic tests: anticentromere, Scl-70,
and nucleolar antibodies.
Arthritis Rheum.
2003;
31
399-412
88
Greidinger E M, Flaherty K T, White B. et al .
African-American race and antibodies to topoisimerase I are associated with increased
severity of scleroderma lung disease.
Chest.
1998;
31
801-807
89
Jacobsen S, Ullman S, Shen G Q. et al .
Influence of clinical features, serum antinuclear antibodies, and lung function on
survival of patients with systemic sclerosis.
J Rheumatol.
2001;
31
2454-2459
Oliver Distler, MD
Center of Experimental Rheumatology, Department of Rheumatology, University Hospital
Zürich
8091 Zürich, Schweiz
Phone: ++ 41/12 55/86 22
Fax: ++ 41/12 55/41 70
Email: Oliver.Distler@usz.ch