Horm Metab Res 2005; 37(2): 118-122
DOI: 10.1055/s-2005-861161
Original Clinical
© Georg Thieme Verlag KG Stuttgart · New York

Spontaneous Prolactin Secretion in Growth Hormone-deficient Children

T.  M.  K.  Völkl1 , S.  Haas1 , H.  G.  Dörr1
  • 1Division of Pediatric Endocrinology, Hospital for Children and Adolescents, University of Erlangen-Nuremberg, Germany
Parts of this study have been presented at the 47th annual meeting of the German Endocrine Society (DGE) in Cologne, Germany
Weitere Informationen

Publikationsverlauf

Received 3 June 2004

Accepted after revision 10 August 2004

Publikationsdatum:
21. März 2005 (online)

Abstract

Objective: To establish the spontaneous nocturnal prolactin (PRL) release in relation to growth hormone (GH)-deficient children and idiopathic short-stature children (ISS). Methods: A total of 32 prepubertal children (11 girls, 21 boys) aged between 3 and 12 years were studied retrospectively and sorted according to diagnosis: idiopathic GH deficiency (GHD, n = 9), neurosecretory deficiency of GH secretion (NSD, n = 10) and ISS (n = 13). Nocturnal spontaneous hormone secretion was studied by intermittent venous sampling. Secretion profiles and copulsatility were analyzed using Pulsar and AnCoPuls software. Results: (median, range in μg/l): Children with GHD and NSD had significantly lower GH and area-under-the-curve (AUC) levels than normal children (p < 0.001), whereas ISS children showed normal values. In contrast, prolactin levels were significantly higher (p < 0. 05) in children with GHD and NSD (11.1, 4.9 - 13.0 and 10.3, 8. 8 - 19. 6, respectively) compared to the ISS children (8.0, 4.9 - 13.0). In addition, prolactin AUC and peak height were higher (p < 0.05) in GH-deficient patients, whereas all other secretion parameters were the same. Correlation and copulsatility analysis revealed no evidence for a direct relation between PRL and GH secretion. Conclusions: PRL secretion is significantly higher in children with GHD and NSD compared to ISS children but PRL and GH show no copulsatile secretion pattern.

References

  • 1 Riddle O, Bates R W, Dykshorn S W. The preparation, identification and assay of prolactin - a hormone of the anterior pituitary.  Am J Physiol. 1933;  105 191-216
  • 2 Stricker P, Grueter R. Action du lobe antérieur de l'hypophyse sur la montée laiteuse.  CR Soc Biol (Paris). 1928;  99 1978-1980
  • 3 Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly P A. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice.  Endocr Rev. 1998;  19 225-268
  • 4 Goffin V, Binart N, Touraine P, Kelly P A. Prolactin: the new biology of an old hormone.  Annu Rev Physiol. 2002;  64 47-67
  • 5 Goffin V, Shiverick K T, Kelly P A, Martial J A. Sequence-function relationships within the expanding family of prolactin, growth hormone, placental lactogen, and related proteins in mammals.  Endocr Rev. 1996;  17 385-410
  • 6 Miller W L, Eberhardt N L. Structure and evolution of the growth hormone gene family.  Endocr Rev. 1983;  4 97-130
  • 7 Niall H D, Hogan M L, Sauer R, Rosenblum I Y, Greenwood F C. Sequences of pituitary and placental lactogenic and growth hormones: evolution from a primordial peptide by gene reduplication.  Proc Natl Acad Sci U S A. 1971;  68 866-870
  • 8 Nicoll C S, Mayer G L, Russell S M. Structural features of prolactins and growth hormones that can be related to their biological properties.  Endocr Rev. 1986;  7 169-203
  • 9 Wennink J M, Delemarre-Van de Waal H A, Schoemaker R, Schoemaker H, Schoemaker J. Luteinizing hormone and follicle stimulating hormone secretion patterns in boys throughout puberty measured using highly sensitive immunoradiometric assays.  Clin Endocrinol (Oxf). 1989;  31 551-564
  • 10 Dunger D B, Matthews D R, Edge J A, Jones J, Preece M A. Evidence for temporal coupling of growth hormone, prolactin, LH and FSH pulsatility overnight during normal puberty.  J Endocrinol. 1991;  130 141-149
  • 11 Albers N, Bettendorf M, Herrmann H, Kaplan S L, Grumbach M M. Hormone ontogeny in the ovine fetus. XXVII. Pulsatile and copulsatile secretion of luteinizing hormone, follicle-stimulating hormone, growth hormone, and prolactin in late gestation: a new method for the analysis of copulsatility.  Endocrinology. 1993;  132 701-709
  • 12 Merriam G R, Wachter K W. Algorithms for the study of episodic hormone secretion.  Am J Physiol. 1982;  243 E310-E318
  • 13 Albers N. Overview of pulse actions in the human.  Growth Horm IGF Res. 2001;  11 Suppl A S39-S42
  • 14 Knobil E. Control of the menstrual cycle and ovulation.  Contracept Fertil Sex. 1995;  23 705-709
  • 15 Bercu B B, Shulman D, Root A W, Spiliotis B E. Growth hormone (GH) provocative testing frequently does not reflect endogenous GH secretion.  J Clin Endocrinol Metab. 1986;  63 709-716
  • 16 Sjoberg M, Salazar T, Espinosa C, Dagnino A, Avila A, Eggers M, Cassorla F, Carvallo P, Mericq M V. Study of GH sensitivity in chilean patients with idiopathic short stature.  J Clin Endocrinol Metab. 2001;  86 4375-4381
  • 17 Achermann J C, Brook C G, Robinson I C, Matthews D R, Hindmarsh P C. Peak and trough growth hormone (GH) concentrations influence growth and serum insulin like growth factor-1 (IGF-1) concentrations in short children.  Clin Endocrinol (Oxf). 1999;  50 301-308
  • 18 Rochiccioli P, Pienkowski C, Tauber M T, Uboldi F, Enjaume C. Association of pharmacological tests and study of 24-hour growth hormone secretion in the investigation of growth retardation in children: analysis of 257 cases.  Horm Res. 1991;  35 70-75
  • 19 Spiliotis B E, August G P, Hung W, Sonis W, Mendelson W, Bercu B B. Growth hormone neurosecretory dysfunction. A treatable cause of short stature.  JAMA. 1984;  251 2223-2230
  • 20 Ingraham H A, Chen R P, Mangalam H J, Elsholtz H P, Flynn S E, Lin C R, Simmons D M, Swanson L, Rosenfeld M G. A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype.  Cell. 1988;  55 519-529
  • 21 Mangalam H J, Albert V R, Ingraham H A, Kapiloff M, Wilson L, Nelson C, Elsholtz H, Rosenfeld M G. A pituitary POU domain protein, Pit-1, activates both growth hormone and prolactin promoters transcriptionally.  Genes Dev. 1989;  3 946-958
  • 22 Bodner M, Castrillo J L, Theill L E, Deerinck T, Ellisman M, Karin M. The pituitary-specific transcription factor GHF-1 is a homeobox-containing protein.  Cell. 1988;  55 505-518
  • 23 Cohen L E, Radovick S. Molecular basis of combined pituitary hormone deficiencies.  Endocr Rev. 2002;  23 431-442
  • 24 Freeman M E, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion.  Physiol Rev. 2000;  80 1523-1631
  • 25 Leong D A, Frawley L S, Neill J D. Neuroendocrine control of prolactin secretion.  Annu Rev Physiol. 1983;  45 109-127
  • 26 Vesely D L, San Miguel  GI, Hassan I, Schocken D D. Atrial natriuretic hormone, vessel dilator, long acting natriuretic hormone, and kaliuretic hormone decrease circulating prolactin concentrations.  Horm Metab Res. 2002;  34 245-249
  • 27 Rojas Vega  S, Strüder H K, Hollmann W. Plasma prolactin concentration increases after hyercapnia acidosis.  Horm Metab Res. 2003;  35 598-601
  • 28 de Zegher F, Devlieger H, Veldhuis J D. Properties of growth hormone and prolactin hypersecretion by the human infant on the day of birth.  J Clin Endocrinol Metab. 1993;  76 1177-1181

Prof. Helmuth G. Dörr, M. D.

Division of Pediatric Endocrinology, Hospital for Children and Adolescents, Friedrich-Alexander-University of Erlangen-Nuremberg

Loschgestrasse 15 · 91054 Erlangen · Germany

Telefon: +49 (9131) 8533732

Fax: +49 (9131) 8533713

eMail: hgdoerr@kinder.imed.uni-erlangen.de

    >