Synthesis 2005(8): 1350-1358  
DOI: 10.1055/s-2005-865286
PAPER
© Georg Thieme Verlag Stuttgart · New York

Acylurea Pyrolysis - Thermolysis of N,N′-Disubstituted Ferrocenoylureas as a New Way to N-Monosubstituted Ferrocenecarboxamides

Bernd Schetter*
Humboldt-Universität zu Berlin, Institut für Chemie, Unter den Linden 6, 10099 Berlin, Germany
e-Mail: bernd.schetter@chemie.hu-berlin.de;
Further Information

Publication History

Received 2 November 2004
Publication Date:
07 April 2005 (online)

Abstract

Several N-monosubstituted amides of ferrocenecarbox­ylic acid were synthesized by pyrolysis of N,N′-disubstituted ferrocenoylureas in boiling dioxane under neutral conditions. The reaction time and the yield were found to be dependent on the nature of the substituents. For the species D1 and D4 a single crystal structure analysis was made. The structural effect of the twist between the amide plane and the cyclopentadienyl rings was investigated.

    References

  • 1 Sunthankar SV. Mahadik ST. Indian J. Chem.  1973,  11:  1207 
  • 2 Federman Neto A. Miller J. Fariade Andrade V. Fujimoto SY. Afonso AMMDFV. Darin A. Andrade e Silva ML. Borges ADL. Del Ponte G. Z. Anorg. Allg. Chem.  2002,  628:  209 
  • 3 Schetter B. Speiser B. J. Organomet. Chem.  2004,  689:  1472 
  • 4 Galow TH. Rodrigo J. Cleary K. Cooke G. Rotello VM. J. Org. Chem.  1999,  64:  3745 
  • 5 Nuhn P. Naturstoffchemie   S. Hirtzel Verlag; Stuttgart: 1997.  3. Aufl. p.157 
  • 6 Mandal HS. Kraatz H.-B. J. Organomet. Chem.  2003,  674:  32 
  • 7 Kraatz H.-B. Lusztyk J. Enright GE. Inorg. Chem.  1997,  36:  2400 
  • 8 Leuckart R. Ber. Dtsch. Chem. Ges.  1885,  18:  873 
  • 9 Leuckart R. Schmidt M. Ber. Dtsch. Chem. Ges.  1885,  18:  2338 
  • 10 Rausch M. Shaw P. Mayo D. Lovelace AM. J. Org. Chem.  1958,  505 
  • 11 Oberhoff M. Duda L. Karl J. Mohr R. Erker G. Fröhlich R. Grehl M. Organometallics  1996,  15:  4005 
  • 12a Metallinus C. Szillat H. Taylor NJ. Snieckus V. Adv. Synth. Catal.  2003,  345:  370 
  • 12b Laufer RS. Veith U. Taylor NJ. Snieckus V. Org. Lett.  2000,  2:  629 
  • 13 Boev VI. Dombrovskii AV. Zh. Obshch. Khim.  1977,  47:  1892 
  • 14 Lau HH. Hart H. J. Org. Chem.  1959,  24:  280 
  • 15 Acton EM. Silverstein RM. J. Org. Chem.  1959,  24:  1484 
  • 16 Mabrouk ST. Hart WP. Rausch MD. J. Organomet. Chem.  1996,  527:  43 
  • 17 Nesmeyanov AN. Makarova LG. Vinogradov VN. Izv. Akad. Nauk. SSSR., Ser. Khim.  1973,  12:  2796 
  • 18a According to the statement of one of the referees ferrocenoyl acid chloride is easily accessible by treatement of ferrocenecarboxylic acid with oxalyl chloride in large yield. This is in agreement with the results of Lorkowski et al.: Lorkowski H.-J. Pannier R. Wende A. J. Prakt. Chem.  1967,  35:  149 
  • 18b Good yields of ferrocenoyl acid chloride were also obtained (as a brown oil) by Schlögel by treatement of the acid with PCl5 in benzene and removal of POCl3 in vacuo: Schlögel K. Monatsh. Chem.  1957,  88:  601 ; nevertheless others failed to obtain such good yields of the acid chloride
  • 19 Cooke G. Radhi A. Boden N. Bushby RJ. Lu Z. Brown S. Heat SL. Tetrahedron  2000,  56:  3385 
  • 20 Schetter B. Z. Anorg. Allg. Chem.  2004,  630:  1074 
  • 21a Pradines B. Fusai T. Daries W. Laloge V. Rogier C. Millet P. Panconi E. Kombila M. Parzy D. J. Antimicrob. Chemother.  2001,  179 
  • 21b Kaluz S. Toma S. Farm. Obz.  1989,  58:  11 
  • 21c Caldwell G. Meirim MG. Neuse EW. van Rensburg CE. J. Appl. Organomet. Chem.  1998,  12:  793 
  • 22 Stone DL. Smith DK. Polyhedron  2003,  22:  763 
  • 23a Bariić L. Dropučić M. Rapić V. Pritzkow H. Kirin S. Metzler-Nolte N. Chem. Commun.  2004,  17:  2004 
  • 23b Chowdhury S. Schatte G. Kraatz H.-B. Dalton Trans.  2004,  1726 
  • 23c de Hatten X. Weyhermüller T. Metzler-Nolte N. J. Organomet. Chem.  2004,  689:  4856 
  • 24 While this work was in progress Dr. Imrie, Port Elizabeth, informed us by a personal communication that he had synthesized independently from us this species in the same way, by the method described by Wang and Huang: Wang QM. Huang RQ. J. Chem. Res., Synop.  2001,  246 
  • 25a Lin L. Berces A. Kraatz H.-B. J. Organomet. Chem.  1998,  556:  11 
  • 25b Beer PD. Crowe DB. Ogden MI. Drew MG. Main B. J. Chem. Soc., Dalton Trans.  1993,  2107 
  • 26 Patin H. Mourot D. C. R. Seances Acad. Sci., Ser. C  1975,  281:  737 
  • 27 Slocum DW. Stonemark FE. J. Org. Chem.  1973,  38:  1677 
  • 28 Cox RL. Schneider W. Koppang MD. Anal. Chim. Acta  1992,  262:  145 
  • 29 Ungureau M. Saint-Aman E. Ion I. Moutet J.-C. Catinel A. Stud. Univ. Babes-Bolyai, Chem.  1996,  41:  79 
  • 30 Mandelbaum AM. Cais M. Tetrahedron Lett.  1964,  5:  3847 
  • 31 Rapić V. Filipović-Marinić N. Org. Mass Spectrom.  1985,  20:  104 
  • 32a Ferrocenes: Homogeneous Catalysis Organic Synthesis Material Science   Togoni A. Hayashi T. Wiley-VCH; Weinheim: 1995. 
  • 32b Sawamura M. Ito Y. Chem. Rev.  1992,  92:  875 
  • 32c Modern Aldol Reactions   Mahrwald R. Wiley-VCH; Weinheim: 2004. 
  • 32d Schetter B. Mahrwald R. In Quaternary Carbon Centers - Challenges for Organic Synthesis   Christoffers J. Baro A. Wiley-VCH; Weinheim: p.in press 
  • 32e těpnička P. Demel J. Čejka J. J. Mol. Catal. A: Chem.  2004,  224:  169 
  • 32f Bianchini C. Meli A. Oberhauser W. Parisel S. Gusev OV. Kal’sin AM. Vologdin NV. Dolgushin FM. J. Mol. Catal. A: Chem.  2004,  224:  35 
  • 32g Hou X.-L. Sun N. Org. Lett.  2004,  6:  4399 
  • 32h Cadierno V. Crochet P. Diez J. Garcia-Garrido SE. Gimeno S. Organometallics  2004,  23:  4386 
  • 32i Tappe K. Knochel P. Tetrahedron: Asymmetry  2004,  15:  91 
  • 32j Kloetzing RJ. Lotz M. Knochel P. Tetrahedron: Asymmetry  2003,  14:  155 
  • 32k Enders D. Peters R. Lochtman R. Raabe G. Runsink J. Bats JW. Eur. J. Org. Chem.  2000,  20:  3399 
  • 32l Ireland T. Tappe K. Grossheimann G. Knochel P. Chem.-Eur. J.  2002,  8:  843 
  • 32m Patti A. Lotz M. Knochel P. Tetrahedron: Asymmetry  2002,  12:  3375 
  • 32n Enders D. Klumpen T. J. Organomet. Chem.  2001,  637:  698 
  • 32o Enders D. Peters R. Lochtman R. Runsink J. Eur. J. Org. Chem.  2000,  16:  2839 
  • 32p Lotz M. Ireland T. Tappe K. Knochel P. Chirality  2000,  12:  389 
  • 32q Zhi Y. Dong C. Han J. Zheng W. Zhang L. Huaxue Yanjiu Yu Yingyong  2000,  12:  413 
  • 32r Ireland T. Grossheimann G. Wieser-Jeunesse C. Knochel P. Angew. Chem. Int. Ed.  1999,  38:  3212 
  • 32s Lotz M. Ireland T. Perea JJA. Knochel P. Tetrahedron: Asymmetry  1999,  10:  1839 
  • 32t Perea JJA. Lotz M. Knochel P. Tetrahedron: Asymmetry  1999,  10:  375 
  • 32u Perea JJA. Borner A. Knochel P. Tetrahedron Lett.  1998,  39:  8073 
  • 32v Schwink L. Ireland T. Puntener K. Knochel P. Tetrahedron: Asymmetry  1999,  9:  1143 
  • 32w Puentener K. Schwink L. Knochel P. Tetrahedron Lett.  1998,  37:  8165 
  • 33 Chapell BJ. Snieckus V. J. Am. Chem. Soc.  1996,  118:  685 
  • 34a Hall CD. Danks IP. Nyburg SC. Parkins AW. Sharpe NW. Organometallics  1990,  9:  1602 
  • 34b Moriuchi T. Ikeda I. Hirao T. Organometallics  1995,  14:  3578 
  • 35 Sheldrick GM. SHELX-97   Universität Göttingen; Germany: 1997. 
36

A scale-up was tried for the synthesis of C1. The reaction was carried out with A1 (2 g) in refluxing dioxane (50 mL). No decrease of the yield was detectable and unconverted A1 could be easily recovered. The yield was 63%.