Semin Thromb Hemost 2005; 31(2): 162-167
DOI: 10.1055/s-2005-869521
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel: +1(212) 584-4662.

The Platelet P2 Receptors in Thrombosis

Christian Gachet1 , 2 , Béatrice Hechler2
  • 1Researcher, Etablissement Français du Sang-Alsace, Strasbourg Cedex, France
  • 2INSERM U.311, Etablissement Français du Sang-Alsace, Strasbourg Cedex, France
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
26. April 2005 (online)

ABSTRACT

Adenosine diphosphate (ADP) and adenosine triphosphate (ATP) play a crucial role in hemostasis and thrombosis, and their receptors are potential targets for antithrombotic drugs. The ATP-gated channel P2X1 and the two G protein-coupled P2Y1 and P2Y12 ADP receptors selectively contribute to platelet aggregation. Because of its central role in the formation and stabilization of a thrombus, the P2Y12 receptor is a well-established target of antithrombotic drugs such as clopidogrel, which has proven efficacy in many clinical trials and experimental models of thrombosis. Competitive P2Y12 antagonists have also been shown to be effective in experimental thrombosis as well as in several clinical trials. Studies in P2Y1 and P2X1 knockout mice and experimental thrombosis models using selective P2Y1 and P2X1 antagonists have shown that, depending on the conditions, these receptors could also be potential targets for new antithrombotic drugs. Because both P2X1 and P2Y1 receptor inhibition result in milder prolongation of the bleeding time as compared with P2Y12 inhibition, the idea is put forward that combinations of P2 receptor antagonists could improve efficacy with diminished hemorrhagic risk. However, further studies with stronger and more selective P2 receptor antagonists are required to validate such a point of view.

REFERENCES

  • 1 Hellem A. The adhesiveness of human blood platelets in vitro.  Scand J Clin Lab Invest. 1960;  12(suppl) 1-117
  • 2 Gaarder A, Jonsen J, Laland S et al.. Adenosine diphosphate in red cells as a factor in the adhesiveness of human blood platelets.  Nature. 1961;  192 531-532
  • 3 Ollgard E. Macroscopic studies of platelet aggregation: nature of an aggregating factor in red blood cells and platelets.  Thromb Diath Haemorrh. 1961;  6 86-97
  • 4 Born G VR. Aggregation of blood platelets by adenosine diphosphate and its reversal.  Nature. 1962;  194 27-29
  • 5 Born G V. Adenosine diphosphate as a mediator of platelet aggregation in vivo: an editorial view.  Circulation. 1985;  72 741-746
  • 6 Maffrand J P, Bernat A, Delebassee D et al.. ADP plays a key role in thrombogenesis in rats.  Thromb Haemost. 1988;  59 225-230
  • 7 Kinlough-Rathbone R L, Packham M A, Reimers H J et al.. Mechanisms of platelet shape change, aggregation, and release induced by collagen, thrombin, or A23,187.  J Lab Clin Med. 1977;  90 707-719
  • 8 Reimers H. Adenine nucleotides in blood platelets. In: Longenecker G The Platelets: Physiology and Pharmacology. San Diego, CA; Academic Press 1985: 85-98
  • 9 Cusack N J, Hourani S M. Platelet P2 receptors: from curiosity to clinical targets.  J Auton Nerv Syst. 2000;  81 37-43
  • 10 Humphries R G. Pharmacology of AR-C69931MX and related compounds: from pharmacological tools to clinical trials.  Haematologica. 2000;  85 66-72
  • 11 Herbert J M, Savi P. P2Y12, a new platelet ADP receptor, target of clopidogrel.  Semin Vasc Med. 2003;  3 113-122
  • 12 Zawilska K M, Born G V, Begent N A. Effect of ADP-utilizing enzymes on the arterial bleeding time in rats and rabbits.  Br J Haematol. 1982;  50 317-325
  • 13 Enjyoji K, Sevigny J, Lin Y et al.. Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation.  Nat Med. 1999;  5 1010-1017
  • 14 Marcus A J, Broekman M J, Drosopoulos J H et al.. Heterologous cell-cell interactions: thromboregulation, cerebroprotection and cardioprotection by CD39 (NTPDase-1).  J Thromb Haemost. 2003;  1 2497-2509
  • 15 Cattaneo M, Gachet C. ADP receptors and clinical bleeding disorders.  Arterioscler Thromb Vasc Biol. 1999;  19 2281-2285
  • 16 Cattaneo M. The P2 receptors and congenital platelet function defects.  Semin Thromb Hemost. 2005;  31 168-173
  • 17 Hechler B, Cattaneo M, Gachet C. The P2 receptors in platelet function.  Semin Thromb Hemost. 2005;  31 150-161
  • 18 Léon C, Freund M, Ravanat C et al.. Key role of the P2Y(1) receptor in tissue factor-induced thrombin- dependent acute thromboembolism: studies in P2Y(1)-knockout mice and mice treated with a P2Y(1) antagonist.  Circulation. 2001;  103 718-723
  • 19 Léon C, Ravanat C, Freund M et al.. Differential involvement of the P2Y1 and P2Y12 receptors in platelet procoagulant activity.  Arterioscler Thromb Vasc Biol. 2003;  23 1941-1947
  • 20 Léon C, Alex M, Klocke A et al.. Platelet ADP receptors contribute to the initiation of intravascular coagulation.  Blood. 2004;  103 594-600
  • 21 Oury C, Toth-Zsamboki E, Thys C et al.. The ATP-gated P2X1 ion channel acts as a positive regulator of platelet responses to collagen.  Thromb Haemost. 2001;  86 1264-1271
  • 22 Oury C, Sticker E, Cornelissen H et al.. ATP augments vWF-dependent shear-induced platelet aggregation through Ca2+-calmodulin and myosin light chain kinase activation.  J Biol Chem. 2004;  279 26266-26273
  • 23 Hechler B, Lenain N, Marchese P et al.. A role of the fast ATP-gated P2X1 cation channel in thrombosis of small arteries in vivo.  J Exp Med. 2003;  198 661-667
  • 24 Cattaneo M, Marchese P, Jacobson K A, Ruggeri Z. New insights into the role of P2X1 in platelet function.  Haematologica. 2002;  87 13-14
  • 25 Hollopeter G JH, Vincent D, Li G et al.. Identification of the platelet ADP receptor targeted by antithrombotic drugs.  Nature. 2001;  409 202-207
  • 26 Savi P, Pereillo J M, Uzabiaga M F et al.. Identification and biological activity of the active metabolite of clopidogrel.  Thromb Haemost. 2000;  84 891-896
  • 27 Cazenave J P, Gachet C. Pharmacology of ticlopidine and clopidogrel. In: Gresele P, Page C, Fuster V, Vermylen J Platelets in Thrombotic and Non-Thrombotic Disorders. Cambridge, UK; Cambridge University Press 2002: 929-939
  • 28 Savi P, Herbert J-M. Clopridogrel and ticlopidine: P2Y12 ADP-receptor antagonists for the prevention of atherothrombosis.  Semin Thromb Hemost. 2005;  31 174-183
  • 29 Cattaneo M, Lecchi A, Randi A M et al.. Identification of a new congenital defect of platelet function characterized by severe impairment of platelet responses to adenosine diphosphate.  Blood. 1992;  80 2787-2796
  • 30 Cattaneo M, Lecchi A, Lombardi R et al.. Platelets from a patient heterozygous for the defect of P2CYC receptors for ADP have a secretion defect despite normal thromboxane A2 production and normal granule stores: further evidence that some cases of platelet ‘primary secretion defect’ are heterozygous for a defect of P2CYC receptors.  Arterioscler Thromb Vasc Biol. 2000;  20 E101-E106
  • 31 Cattaneo M, Zighetti M L, Lombardi R et al.. Molecular bases of defective signal transduction in the platelet P2Y12 receptor of a patient with congenital bleeding.  Proc Natl Acad Sci USA. 2003;  100 1978-1983
  • 32 Fontana P, Gaussem P, Aiach M et al.. P2Y12 H2 haplotype is associated with peripheral arterial disease: a case-control study.  Circulation. 2003;  108 2971-2973
  • 33 Fontana P, Dupont A, Gandrille S et al.. Adenosine diphosphate-induced platelet aggregation is associated with P2Y12 gene sequence variations in healthy subjects.  Circulation. 2003;  108 989-995
  • 34 Conley P B, Delaney S M. Scientific and therapeutic insights into the role of the platelet P2Y12 receptor in thrombosis.  Curr Opin Hematol. 2003;  10 333-338
  • 35 Dorsam R T, Kunapuli S P. Central role of the P2Y12 receptor in platelet activation.  J Clin Invest. 2004;  113 340-345
  • 36 Dorsam R T, Murugappan S, Ding Z, Kunapuli S P. Clopidogrel: interactions with the P2Y12 receptor and clinical relevance.  Hematology. 2003;  8 359-365
  • 37 Bauer S M. ADP receptor antagonists as antiplatelet therapeutics.  Expert Opin Emerg Drugs. 2003;  8 93-101
  • 38 Shaver S R. P2Y receptors: biological advances and therapeutic opportunities.  Curr Opin Drug Discov Devel. 2001;  4 665-670
  • 39 Foster C J, Prosser D M, Agans J M et al.. Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs.  J Clin Invest. 2001;  107 1591-1598
  • 40 Andre P, Delaney S M, LaRocca T et al.. P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries.  J Clin Invest. 2003;  112 398-406
  • 41 Ingall A H, Dixon J, Bailey A et al.. Antagonists of the platelet P2T receptor: a novel approach to antithrombotic therapy.  J Med Chem. 1999;  42 213-220
  • 42 Storey R F, Sanderson H M, White A E et al.. The central role of the P(2T) receptor in amplification of human platelet activation, aggregation, secretion and procoagulant activity.  Br J Haematol. 2000;  110 925-934
  • 43 Freund M, Mantz F, Nicolini P et al.. Experimental thrombosis on a collagen coated arterioarterial shunt in rats: a pharmacological model to study antithrombotic agents inhibiting thrombin formation and platelet deposition.  Thromb Haemost. 1993;  69 515-521
  • 44 Yao S K, Ober J C, McNatt J et al.. ADP plays an important role in mediating platelet aggregation and cyclic flow variations in vivo in stenosed and endothelium-injured canine coronary arteries.  Circ Res. 1992;  70 39-48
  • 45 Yao S K, McNatt J, Cui K et al.. Combined ADP and thromboxane A2 antagonism prevents cyclic flow variations in stenosed and endothelium-injured arteries in nonhuman primates.  Circulation. 1993;  88 2888-2893
  • 46 Yao S K, Ober J C, Ferguson J J et al.. Clopidogrel is more effective than aspirin as adjuvant treatment to prevent reocclusion after thrombolysis.  Am J Physiol. 1994;  267 H488-H493
  • 47 Herbert J M, Bernat A, Maffrand J P. Importance of platelets in experimental venous thrombosis in the rat.  Blood. 1992;  80 2281-2286
  • 48 Herbert J M, Bernat A, Sainte-Marie M et al.. Potentiating effect of clopidogrel and SR 46349, a novel 5-HT2 antagonist, on streptokinase-induced thrombolysis in the rabbit.  Thromb Haemost. 1993;  69 268-271
  • 49 Wang K, Zhou X, Zhou Z et al.. Blockade of the platelet P2Y12 receptor by AR-C69931MX sustains coronary artery recanalization and improves the myocardial tissue perfusion in a canine thrombosis model.  Arterioscler Thromb Vasc Biol. 2003;  23 357-362
  • 50 van Gestel M A, Heemskerk J W, Slaaf D W et al.. In vivo blockade of platelet ADP receptor P2Y12 reduces embolus and thrombus formation but not thrombus stability.  Arterioscler Thromb Vasc Biol. 2003;  23 518-523
  • 51 Huang J, Driscoll E M, Gonzales M L et al.. Prevention of arterial thrombosis by intravenously administered platelet P2T receptor antagonist AR-C69931MX in a canine model.  J Pharmacol Exp Ther. 2000;  295 492-499
  • 52 Boyer J L. Development of novel and reversible antagonists of P2Y12 receptors as antithrombotic drugs. Presented at the 2004 Purines Conference June 6-9, 2004 Chapel Hill, NC;
  • 53 Patel R, Douglass J G, Cowlen M et al.. In vivo antiplatelet activity of a reversible P2Y12 receptor antagonist. Presented at the 2004 Purines Conference June 6-9, 2004 Chapel Hill, NC;
  • 54 Andre P, LaRocca T, Delaney S M et al.. Anticoagulants (thrombin inhibitors) and aspirin synergize with P2Y12 receptor antagonism in thrombosis.  Circulation. 2003;  108 2697-2703
  • 55 Cattaneo M, Canciani M T, Lecchi A et al.. Released adenosine diphosphate stabilizes thrombin-induced human platelet aggregates.  Blood. 1990;  75 1081-1086
  • 56 A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). CAPRIE Steering Committee.  Lancet. 1996;  348 1329-1339
  • 57 Steinhubl S R, Berger P B, Mann III J T et al.. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial.  JAMA. 2002;  288 2411-2420
  • 58 Mehta S R, Yusuf S, Peters R J et al.. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study.  Lancet. 2001;  358 527-533
  • 59 Yusuf S, Zhao F, Mehta S R et al.. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation.  N Engl J Med. 2001;  345 494-502
  • 60 Sugidachi A, Asai F, Ogawa T et al.. The in vivo pharmacological profile of CS-747, a novel antiplatelet agent with platelet ADP receptor antagonist properties.  Br J Pharmacol. 2000;  129 1439-1446
  • 61 Sugidachi A, Asai F, Yoneda K et al.. Antiplatelet action of R-99224, an active metabolite of a novel thienopyridine-type G(i)-linked P2T antagonist, CS-747.  Br J Pharmacol. 2001;  132 47-54
  • 62 Niitsu Y, Jakubowski J A, Sugidachi A, Asai F. Pharmacology of CS-747 (LY640315), a novel, potent antiplatelet agent with in vivo P2Y12 receptor antagonist activity.  Semin Thromb Hemost. 2005;  31 184-194
  • 63 Nurden A T, Nurden P. Advantages of fast-acting ADP receptor blockade in ischemic heart disease.  Arterioscler Thromb Vasc Biol. 2003;  23 158-159
  • 64 Chattaraj S C. Cangrelor AstraZeneca.  Curr Opin Investig Drugs. 2001;  2 250-255
  • 65 Storey R F, Oldroyd K G, Wilcox R G. Open multicentre study of the P2T receptor antagonist AR-C69931MX assessing safety, tolerability and activity in patients with acute coronary syndromes.  Thromb Haemost. 2001;  85 401-407
  • 66 Storey R F, Wilcox R G, Heptinstall S. Comparison of the pharmacodynamic effects of the platelet ADP receptor antagonists clopidogrel and AR-C69931MX in patients with ischaemic heart disease.  Platelets. 2002;  13 407-413
  • 67 Jacobsson F, Swahn E, Wallentin L, Ellborg M. Safety profile and tolerability of intravenous AR-C69931MX, a new antiplatelet drug, in unstable angina pectoris and non-Q-wave myocardial infarction.  Clin Ther. 2002;  24 752-765
  • 68 Fabre J E, Nguyen M, Latour A et al.. Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice.  Nat Med. 1999;  5 1199-1202
  • 69 Léon C, Hechler B, Freund M et al.. Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y(1) receptor-null mice.  J Clin Invest. 1999;  104 1731-1737
  • 70 Baurand A, Gachet C. The P2Y(1) receptor as a target for new antithrombotic drugs: a review of the P2Y(1) antagonist MRS-2179.  Cardiovasc Drug Rev. 2003;  21 67-76
  • 71 Baurand A, Raboisson P, Freund M et al.. Inhibition of platelet function by administration of MRS2179, a P2Y1 receptor antagonist.  Eur J Pharmacol. 2001;  412 213-221
  • 72 Turner N A, Moake J L, McIntire L V. Blockade of adenosine diphosphate receptors P2Y(12) and P2Y(1) is required to inhibit platelet aggregation in whole blood under flow.  Blood. 2001;  98 3340-3345
  • 73 Goto S, Tamura N, Handa S. Effects of adenosine 5′-diphosphate (ADP) receptor blockade on platelet aggregation under flow.  Blood. 2002;  99 4644-4646
  • 74 Remijn J A, Wu Y P, Jeninga E H et al.. Role of ADP receptor P2Y(12) in platelet adhesion and thrombus formation in flowing blood.  Arterioscler Thromb Vasc Biol. 2002;  22 686-691
  • 75 Lenain N, Freund M, Leon C et al.. Inhibition of localized thrombosis in P2Y1-deficient mice and rodents treated with MRS2179, a P2Y1 receptor antagonist.  J Thromb Haemost. 2003;  1 1144-1149
  • 76 Rosen E D, Raymond S, Zollman A et al.. Laser-induced noninvasive vascular injury models in mice generate platelet- and coagulation-dependent thrombi.  Am J Pathol. 2001;  158 1613-1622
  • 77 Falati S, Gross P, Merrill-Skoloff G et al.. Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse.  Nat Med. 2002;  8 1175-1181
  • 78 Lenain N, Freund M, Hechler B et al.. The role of the P2Y1, P2Y12, and P2X1 platelet receptors in a laser induced model of arterial thrombosis in vivo. Presented at the ISTH meeting July 13-18, 2003 Birmingham, UK (abst);
  • 79 Kim H S, Ohno M, Xu B et al.. 2-substitution of adenine nucleotide analogues containing a bicyclo[3.1.0]hexane ring system locked in a northern conformation: enhanced potency as P2Y1 receptor antagonists.  J Med Chem. 2003;  46 4974-4987
  • 80 Mahaut-Smith M P, Tolhurst G, Evans R J. Emerging roles for P2X1 receptors in platelet activation.  Platelets. 2004;  15 131-144
  • 81 Rolf M G, Brearley C A, Mahaut-Smith M P. Platelet shape change evoked by selective activation of P2X1 purinoceptors with alpha,beta-methylene ATP.  Thromb Haemost. 2001;  85 303-308
  • 82 Rolf M G, Mahaut-Smith M P. Effects of enhanced P2X1 receptor Ca2+ influx on functional responses in human platelets.  Thromb Haemost. 2002;  88 495-502
  • 83 Oury C, Kuijpers M J, Toth-Zsamboki E et al.. Overexpression of the platelet P2X1 ion channel in transgenic mice generates a novel prothrombotic phenotype.  Blood. 2003;  101 3969-3976
  • 84 Kassack M U, Braun K, Ganso M et al.. Structure-activity relationships of analogues of NF449 confirm NF449 as the most potent and selective known P2X1 receptor antagonist.  Eur J Med Chem. 2004;  39 345-357
  • 85 Zighetti M L, Ulmann H, Lecchi A et al.. Studies of the specificity of the suramin analogue (NF449) as P2X1 receptor antagonist.  Haematologica. 2004 (abst);  89 19
  • 86 Hechler B, JP C, Gachet C. Effect of NF449, a novel selective P2X1 receptor antagonist, on platelet activation and thrombosis.  Haematologica. 2004;  89 18

 Dr.
Christian Gachet

INSERM U.311, Etablissement Francais du Sang-Alsace

10, Rue Spielmann, BP N° 36, 67065 Strasbourg Cedex, France

eMail: christian.gachet@efs-alsace.fr

    >