Horm Metab Res 2005; 37(8): 521-527
DOI: 10.1055/s-2005-870322
Original Clinical
© Georg Thieme Verlag KG Stuttgart · New York

Pharmacological PPARγ Stimulation in Contrast to Beta Cell Stimulation Results in an Improvement in Adiponectin and Proinsulin Intact Levels and Reduces Intima Media Thickness in Patients with Type 2 Diabetes

T.  Forst1, 2 , C.  Hohberg1 , S.  D.  Fuellert3 , G.  Lübben4 , T.  Konrad3 , M.  Löbig1 , M.  M.  Weber2 , C.  Sachara5 , V.  Gottschall4 , A.  Pfützner1
  • 1 Institute for Clinical Research and Development, Mainz, Germany
  • 2 Johannes Gutenberg University, Dept. Endocrinology and Metabolism, Mainz, Germany
  • 3 Institute for Metabolic Research, Frankfurt, Germany
  • 4 TAKEDA Pharma, Aachen, Germany
  • 5 ClinResearch, Cologne, Germany
Further Information

Publication History

Received 18 October 2004

Accepted after revision 21 March 2005

Publication Date:
01 September 2005 (online)

Abstract

The role of intact proinsulin and adiponectin in endothelial dysfunction and insulin resistance has been receiving increasing attention. This study investigates the effect of PPARγ stimulation or beta-cell stimulation on metabolic and vascular parameters in patients with type 2 diabetes. In our study, 173 type 2 diabetic patients were recruited and randomly assigned to pioglitazone 45 mg or glimepiride 1 - 6 mg treatment. Intima media thickness of the carotid artery, glycemic control, insulin resistance, adiponectin and intact proinsulin levels were assessed at baseline and after six months of treatment. Despite similar improvements in metabolic control (HbA1c after 24 weeks: - 0.8 ± 0.9 % [pioglitazone] vs. - 0.6 ± 0.8 % [glimepiride]; mean ± SD; p < 0.0001, respectively), improvements in intima media thickness (- 0.033 ± 0.052 mm; p < 0.0001), proinsulin intact (- 5.92 ± 10.04 pmol/l; p < 0.0001), adiponectin (10.9 ± 6.3 μg/ml; p < 0.0001) and HOMA score (- 2.21 ± 3.40; p < 0.0001) were observed by pioglitazone but not glimepiride treatment. Reduction in intima media thickness was correlated with improved insulin sensitivity (r = 0.29; p = 0.0003), and proinsulin intact levels (r = 0.22; p = 0.006), while an inverse correlation was found with adiponectin levels (r = - 0.37; p < 0.0001). Measurement of adiponectin and intact proinsulin enables characterization of the metabolic situation and an estimation of atherosclerotic risk in patients with type 2 diabetes.

References

  • 1 Kannel W B, McGee D L. Diabetes and cardiovascular disease. The Framingham study.  JAMA. 1979;  241 2035-2038
  • 2 Manson J E, Colditz G A, Stampfer M J, Willett W C, Krolewski A S, Rosner B, Arky R A, Speizer F E, Hennekens C H. A prospective study of maturity-onset diabetes mellitus and risk of coronary heart disease and stroke in women.  Arch Intern Med. 1991;  151 1141-1147
  • 3 Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.  Biochem Biophys Res Commun. 1999;  257 79-83
  • 4 Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley R E, Tataranni P A. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia.  J Clin Endocrinol Metab. 2001;  86 1930-1935
  • 5 Schulze M B, Rimm E B, Shai I, Rifai N, Hu F B. Relationship between adiponectin and glycemic control, blood lipids, and inflammatory markers in men with type 2 diabetes.  Diabetes Care. 2004;  27 1680-1687
  • 6 Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, Kihara S, Funahashi T, Tenner A J, Tomiyama Y, Matsuzawa Y. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages.  Blood. 2000;  96 1723-1732
  • 7 Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin.  Circulation. 1999;  100 2473-2476
  • 8 Zoccali C, Mallamaci F, Tripepi G, Benedetto F A, Cutrupi S, Parlongo S, Malatino L S, Bonanno G, Seminara G, Rapisarda F, Fatuzzo P, Buemi M, Nicocia G, Tanaka S, Ouchi N, Kihara S, Funahashi T, Matsuzawa Y. Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease.  J Am Soc Nephrol. 2002;  13 134-141
  • 9 Zethelius B, Byberg L, Hales C N, Lithell H, Berne C. Proinsulin and acute insulin response independently predict Type 2 diabetes mellitus in men-report from 27 years of follow-up study.  Int J Obes Relat Metab Disord. 2003;  46 20-26
  • 10 Yudkin J S. Circulating proinsulin-like molecules.  J Diabetes Complications. 1993;  7 113-123
  • 11 Haffner S M, D’Agostino R, Mykkanen L, Hales C N, Savage P J, Bergman R N, O’Leary D, Rewers M, Selby J, Tracy R, Saad M F. Proinsulin and insulin concentrations in relation to carotid wall thickness: Insulin Resistance Atherosclerosis Study.  Stroke. 1998;  29 1498-1503
  • 12 Pfutzner A, Pfutzner A H, Larbig M, Forst T. Role of intact proinsulin in diagnosis and treatment of type 2 diabetes mellitus.  Diabetes Technol Ther. 2004;  6 405-412
  • 13 Haffner S M, Mykkanen L, Stern M P, Valdez R A, Heisserman J A, Bowsher R R. Relationship of proinsulin and insulin to cardiovascular risk factors in nondiabetic subjects.  Diabetes. 1993;  42 1297-1302
  • 14 Festa A, D’Agostino R Jr, Mykkanen L, Tracy R P, Zaccaro D J, Hales C N, Haffner S M. Relative contribution of insulin and its precursors to fibrinogen and PAI-1 in a large population with different states of glucose tolerance. The Insulin Resistance Atherosclerosis Study (IRAS).  Arterioscler Thromb Vasc Biol. 1999;  19 562-568
  • 15 Yudkin J S, May M, Elwood P, Yarnell J W, Greenwood R, Davey S G. Concentrations of proinsulin like molecules predict coronary heart disease risk independently of insulin: prospective data from the Caerphilly Study.  Diabetologia. 2002;  45 327-336
  • 16 Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus.  Diabetes Care. 2002;  26 (Suppl. 1) S4-S19
  • 17 Matthews D R, Hosker J P, Rudenski A S, Naylor B A, Treacher D F, Turner R C. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.  Diabetologia. 1985;  28 412-419
  • 18 Hills S A, Balkau B, Coppack S W, Dekker J M, Mari A, Natali A, Walker M, Ferrannini E. The EGIR-RISC STUDY (The European group for the study of insulin resistance: relationship between insulin sensitivity and cardiovascular disease risk): I. Methodology and objectives.  Int J Obes Relat Metab Disord. 2004;  47 566-570
  • 19 Koshiyama H, Tanaka S, Minamikawa J. Effect of calcium channel blocker amlodipine on the intimal-medial thickness of carotid arterial wall in type 2 diabetes.  J Cardiovasc Pharmacol. 1999;  33 894-896
  • 20 Pankow J S, Jacobs D R Jr, Steinberger J, Moran A, Sinaiko A R. Insulin resistance and cardiovascular disease risk factors in children of parents with the insulin resistance (metabolic) syndrome.  Diabetes Care. 2004;  27 775-780
  • 21 Trevisan M, Liu J, Bahsas F B, Menotti A. Syndrome X and mortality: a population-based study. Risk Factor and Life Expectancy Research Group.  Am J Epidemiol. 1998;  148 958-966
  • 22 Lerman I, Villa A R, Rios Torres J M, Tamez L E, Gomez P F, Villar Velasco S L, Rull Rodrigo J A. Correlations between surrogate measures of insulin resistance and cardiovascular risk factors in obese and overweight patients.  J Diabetes Complications. 2003;  17 66-72
  • 23 Haffner S M, D’Agostino R Jr, Mykkanen L, Tracy R, Howard B, Rewers M, Selby J, Savage P J, Saad M F. Insulin sensitivity in subjects with type 2 diabetes. Relationship to cardiovascular risk factors: the Insulin Resistance Atherosclerosis Study.  Diabetes Care. 1999;  22 562-568
  • 24 Tenerz A, Norhammar A, Silveira A, Hamsten A, Nilsson G, Ryden L, Malmberg K. Diabetes, insulin resistance, and the metabolic syndrome in patients with acute myocardial infarction without previously known diabetes.  Diabetes Care. 2003;  26 2770-2776
  • 25 Lakka H M, Laaksonen D E, Lakka T A, Niskanen L K, Kumpusalo E, Tuomilehto J, Salonen J T. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men.  JAMA. 2002;  288 2709-2716
  • 26 Steinberg H O, Baron A D. Vascular function, insulin resistance and fatty acids.  Diabetologia. 2002;  45 623-634
  • 27 Zeng G, Nystrom F H, Ravichandran L V, Cong L N, Kirby M, Mostowski H, Quon M J. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells.  Circulation. 2000;  101 1539-1545
  • 28 Jaap A J, Shore A C, Tooke J E. Relationship of insulin resistance to microvascular dysfunction in subjects with fasting hyperglycaemia.  Diabetologia. 1997;  40 238-243
  • 29 Combs T P, Berg A H, Obici S, Scherer P E, Rossetti L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30.  J Clin Invest. 2001;  108 1875-1881
  • 30 Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn B B, Kadowaki T. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase.  Nat Med. 2002;  8 1288-1295
  • 31 Spranger J, Kroke A, Mohlig M, Bergmann M M, Ristow M, Boeing H, Pfeiffer A F. Adiponectin and protection against type 2 diabetes mellitus.  Lancet. 2003;  361 226-228
  • 32 Winzer C, Wagner O, Festa A, Schneider B, Roden M, Bancher-Todesca D, Pacini G, Funahashi T, Kautzky-Willer A. Plasma adiponectin, insulin sensitivity, and subclinical inflammation in women with prior gestational diabetes mellitus.  Diabetes Care. 2004;  27 1721-1727
  • 33 Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, Ishigami M, Kuriyama H, Kishida K, Nishizawa H, Hotta K, Muraguchi M, Ohmoto Y, Yamashita S, Funahashi T, Matsuzawa Y. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages.  Circulation. 2001;  103 1057-1063
  • 34 Shimabukuro M, Higa N, Asahi T, Oshiro Y, Takasu N, Tagawa T, Ueda S, Shimomura I, Funahashi T, Matsuzawa Y. Hypoadiponectinemia is closely linked to endothelial dysfunction in man.  J Clin Endocrinol Metab. 2003;  88 3236-3240
  • 35 Fernandez-Real J M, Castro A, Vazquez G, Casamitjana R, Lopez-Bermejo A, Penarroja G, Ricart W. Adiponectin is associated with vascular function independent of insulin sensitivity.  Diabetes Care. 2004;  27 739-745
  • 36 Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway.  Circulation. 2000;  102 1296-1301
  • 37 Pischon T, Girman C J, Hotamisligil G S, Rifai N, Hu F B, Rimm E B. Plasma adiponectin levels and risk of myocardial infarction in men.  JAMA. 2004;  291 1730-1737
  • 38 Oh J Y, Barrett-Connor E, Wedick N M. Sex differences in the association between proinsulin and intact insulin with coronary heart disease in nondiabetic older adults: the Rancho Bernardo Study.  Circulation. 2002;  105 1311-1316
  • 39 Pfutzner A, Kunt T, Hohberg C, Mondok A, Pahler S, Konrad T, Lubben G, Forst T. Fasting intact proinsulin is a highly specific predictor of insulin resistance in type 2 diabetes.  Diabetes Care. 2004;  27 682-687
  • 40 Ward W K, LaCava E C, Paquette T L, Beard J C, Wallum B J, Porte D Jr. Disproportionate elevation of immunoreactive proinsulin in type 2 (non-insulin-dependent) diabetes mellitus and in experimental insulin resistance.  Int J Obes Relat Metab Disord. 1987;  30 698-702
  • 41 Mohamed-Ali V, Gould M M, Gillies S, Goubet S, Yudkin J S, Haines A P. Association of proinsulin-like molecules with lipids and fibrinogen in non-diabetic subjects-evidence against a modulating role for insulin.  Int J Obes Relat Metab Disord. 1995;  38 1110-1116
  • 42 Schneider D J, Nordt T K, Sobel B E. Stimulation by proinsulin of expression of plasminogen activator inhibitor type-I in endothelial cells.  Diabetes. 1992;  41 890-895
  • 43 Nagi D K, Hendra T J, Ryle A J, Cooper T M, Temple R C, Clark P M, Schneider A E, Hales C N, Yudkin J S. The relationships of concentrations of insulin, intact proinsulin and 32 - 33 split proinsulin with cardiovascular risk factors in type 2 (non-insulin-dependent) diabetic subjects [see comments].  Diabetologia. 1990;  33 532-537
  • 44 Lindahl B, Dinesen B, Eliasson M, Roder M, Jansson J H, Huhtasaari F, Hallmans G. High proinsulin concentration precedes acute myocardial infarction in a nondiabetic population.  Metabolism. 1999;  48 1197-1202
  • 45 Satoh N, Ogawa Y, Usui T, Tagami T, Kono S, Uesugi H, Sugiyama H, Sugawara A, Yamada K, Shimatsu A, Kuzuya H, Nakao K. Antiatherogenic effect of pioglitazone in type 2 diabetic patients irrespective of the responsiveness to its antidiabetic effect.  Diabetes Care. 2003;  26 2493-2499
  • 46 Winkler K, Konrad T, Fullert S, Friedrich I, Destani R, Baumstark M W, Krebs K, Wieland H, Marz W. Pioglitazone reduces atherogenic dense LDL particles in nondiabetic patients with arterial hypertension: a double-blind, placebo-controlled study.  Diabetes Care. 2003;  26 2588-2594
  • 47 Aronoff S, Rosenblatt S, Braithwaite S, Egan J W, Mathisen A L, Schneider R L. Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: a 6-month randomized placebo-controlled dose-response study. The Pioglitazone 001 Study Group.  Diabetes Care. 2000;  23 1605-1611
  • 48 Miyazaki Y, Mahankali A, Matsuda M, Glass L, Mahankali S, Ferrannini E, Cusi K, Mandarino L J, DeFronzo R A. Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone.  Diabetes Care. 2001;  24 710-719
  • 49 Hanefeld M, Brunetti P, Schernthaner G H, Matthews D R, Charbonnel B H, QUARTET S tudy. One-year glycemic control with a sulfonylurea plus pioglitazone versus a sulfonylurea plus metformin in patients with type 2 diabetes.  Diabetes Care. 2004;  27 141-147
  • 50 Pistrosch F, Passauer J, Fischer S, Fuecker K, Hanefeld M, Gross P. In type 2 diabetes, rosiglitazone therapy for insulin resistance ameliorates endothelial dysfunction independent of glucose control.  Diabetes Care. 2004;  27 484-490
  • 51 Vinik A I, Stansberry K B, Barlow P M. Rosiglitazone treatment increases nitric oxide production in human peripheral skin: a controlled clinical trial in patients with type 2 diabetes mellitus.  J Diabetes Complications. 2003;  17 279-285
  • 52 Jiang C, Ting A T, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines.  Nature. 1998;  391 82-86
  • 53 Chinetti G, Griglio S, Antonucci M, Torra I P, Delerive P, Majd Z, Fruchart J C, Chapman J, Najib J, Staels B. Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages.  J Biol Chem. 1998;  273 25 573-25 580
  • 54 Pasceri V, Wu H D, Willerson J T, Yeh E T. Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators.  Circulation. 2000;  101 235-238
  • 55 Kubo K. Effect of pioglitazone on blood proinsulin levels in patients with type 2 diabetes mellitus.  Endocr J. 2002;  49 323-328
  • 56 Yu J G, Javorschi S, Hevener A L, Kruszynska Y T, Norman R A, Sinha M, Olefsky J M. The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects.  Diabetes. 2002;  51 2968-2974
  • 57 Miyazaki Y, Mahankali A, Wajcberg E, Bajaj M, Mandarino L J, DeFronzo R A. Effect of pioglitazone on circulating adipocytokine levels and insulin sensitivity in type 2 diabetic patients.  J Clin Endocrinol Metab. 2004;  89 4312-4319
  • 58 Hirose H, Kawai T, Yamamoto Y, Taniyama M, Tomita M, Matsubara K, Okazaki Y, Ishii T, Oguma Y, Takei I, Saruta T. Effects of pioglitazone on metabolic parameters, body fat distribution, and serum adiponectin levels in Japanese male patients with type 2 diabetes.  Metabolism. 2002;  51 314-317
  • 59 Tsunekawa T, Hayashi T, Suzuki Y, Matsui-Hirai H, Kano H, Fukatsu A, Nomura N, Miyazaki A, Iguchi A. Plasma adiponectin plays an important role in improving insulin resistance with glimepiride in elderly type 2 diabetic subjects.  Diabetes Care. 2003;  26 285-289
  • 60 O’Leary D H, Polak J F, Kronmal R A, Manolio T A, Burke G L, Wolfson S K Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group.  N Engl J Med. 1999;  340 14-22
  • 61 Bots M L, Hofman A, Grobbee D E. Increased common carotid intima-media thickness. Adaptive response or a reflection of atherosclerosis? Findings from the Rotterdam Study.  Stroke. 1997;  28 2442-2447
  • 62 Touboul P J, Elbaz A, Koller C, Lucas C, Adrai V, Chedru F, Amarenco P. Common carotid artery intima-media thickness and brain infarction : the Etude du Profil Genetique de l’Infarctus Cerebral (GENIC) case-control study. The GENIC Investigators.  Circulation. 2000;  102 313-318
  • 63 Wohlin M, Sundstrom J, Arnlov J, Andren B, Zethelius B, Lind L. Impaired insulin sensitivity is an independent predictor of common carotid intima-media thickness in a population sample of elderly men.  Atherosclerosis. 2003;  170 181-185
  • 64 Mitsuhashi N, Onuma T, Kubo S, Takayanagi N, Honda M, Kawamori R. Coronary artery disease and carotid artery intima-media thickness in Japanese type 2 diabetic patients.  Diabetes Care. 2002;  25 1308-1312
  • 65 Nakamura T, Matsuda T, Kawagoe Y, Ogawa H, Takahashi Y, Sekizuka K, Koide H. Effect of pioglitazone on carotid intima-media thickness and arterial stiffness in type 2 diabetic nephropathy patients.  Metabolism. 2004;  53 1382-1386
  • 66 Koshiyama H, Shimono D, Kuwamura N, Minamikawa J, Nakamura Y. Rapid communication: inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes.  J Clin Endocrinol Metab. 2001;  86 3452-3456
  • 67 Sidhu J S, Kaposzta Z, Markus H S, Kaski J C. Effect of rosiglitazone on common carotid intima-media thickness progression in coronary artery disease patients without diabetes mellitus.  Arterioscler Thromb Vasc Biol. 2004;  24 930-934
  • 68 Katz R J, Ratner R E, Cohen R M, Eisenhower E, Verme D. Are insulin and proinsulin independent risk markers for premature coronary artery disease?.  Diabetes. 1996;  45 736-741
  • 69 Niskanen L, Rauramaa R, Miettinen H, Haffner S M, Mercuri M, Uusitupa M. Carotid artery intima-media thickness in elderly patients with NIDDM and in nondiabetic subjects.  Stroke. 1996;  27 1986-1992

Thomas Forst, M.D.

IKFE GmbH

Parcusstr. 8 · 55116 Mainz · Germany

Phone: +49 (6131) 576 36 20 ·

Fax: +49 6131 57636 11

Email: ThomasF@ikfe.de

    >