Zusammenfassung
A-Wellen sind reproduzierbare Muskelaktionspotenziale zwischen M-Antwort und F-Welle
oder nach der F-Welle. Sie weisen eine konstante Latenz, Amplitude und Form auf. Motorischer
Axonreflex und die häufigere ektope axonale Nachentladung (EAN) sind die wichtigsten
Spielarten. Es wird allgemein angenommen, dass EAN auf Demyelinisierung zurückgehen.
Diese Interpretation wird in der vorliegenden Arbeit einer kritischen Prüfung unterzogen.
Methoden: Über den Zeitraum von 2001 - 2003 wurden bei 506 F-Wellenuntersuchungen des N. tibialis
von 283 Patienten mit verschiedenen Polyneuropathien (PNP) im Vergleich zu 237 Registrierungen
von 128 Patienten ohne neuromuskuläre Erkrankung die Häufigkeit von A-Wellen untersucht.
Ergebnisse: (A-Wellen pro Nerv ± Standardabweichung; ns: nicht signifikant): Kontrollgruppe 0,4
± 0,7, hereditäre motorische und sensible Polyneuropathien (HMSN) 0,9 ± 1,3 (ns),
Miller-Fisher-Syndrom (MFS) 0,25 ± 0,7 (ns), akutes Guillain-Barré-Syndrom (GBS) 6,8
± 3,5 (p < 0,0005), chronisches GBS 3,0 ± 2,1 (p < 0,0005), sekundär-entzündliche
PNP 1,35 ± 1,6 (p < 0,05), metabolisch-toxische PNP 0,9 ± 1,1 (p < 0,0005). Diskussion: Bei etwa gleicher Nervenleitgeschwindigkeit (35 m/s) war die Anzahl der A-Wellen
beim GBS signifikant erhöht, bei der HMSN nicht. Demyelinisierung per se ist daher
evtl. nicht die alleinige Ursache für das Auftreten von A-Wellen. Neben Unterschieden
der Verlaufsdynamik kommen vor allem humoral-entzündliche Faktoren für die Pathogenese
der A-Wellen vom EAN-Typ beim GBS in Betracht. Ferner scheint das Vorkommen von A-Wellen
zwischen den klinisch verwandten Krankheitsbildern MFS und GBS zu diskriminieren.
Abstract
A-waves are motor unit action potentials that may be registered between M-response
and F-wave or after the F-wave. They have a constant latency, amplitude and shape.
Motor axon reflex or the more frequent ectopic axonal after discharge (EAA) are the
most important representatives. It is generally assumed that EAA are entirely due
to demyelination. This interpretation is challenged in the present report. Methods: Occurrence and frequency of A-waves were analyzed in F-wave curves from 506 tibial
nerves recorded in 283 patients with different types of polyneuropathies (PNP) between
2001 and 2003. 237 F-wave recordings from 128 patients without neuromuscular disorders
served as controls. Results: (A-waves per nerve ± SD; ns: not significant): Control group 0.4 ± 0.7; hereditary
motor and sensory neuropathies (HMSN) 0.9 ± 1.3 (ns), Miller-Fisher syndrome (MFS)
0.25 ± 0.7 (ns), acute Guillain-Barré syndrome (GBS) 6.8 ± 3.5 (p < 0.0005), chronic
GBS 3.0 ± 2.1 (p < 0.0005), secondary inflammatory PNP 1.35 ± 1.6 (p < 0.05), metabolic-toxic
PNP 0.9 ± 1.1 (p < 0.0005). Discussion: Despite of equal values for the nerve conduction velocity (35 m/s), the number of
A-waves per nerve was significantly elevated in patients with GBS and not in HMSN.
Therefore, demyelination does not seem to be the sole precondition for A-waves to
occur. Beside differences in disease dynamics, presumably humoral immune factors may
be involved in the pathogenesis of A-waves of the EAA-type. Furthermore, the occurrence
of A-waves may discriminate between the closely related disease entities of MFS and
GBS.
Key words
A-wave - motor axon reflex - Guillain-Barré syndrome - polyneuropathy - humoral inflammatory
pathogenesis
Literatur
- 1
Anonym .
AAEM glossary of terms in electrodiagnostic medicine.
Muscle & Nerve Supplement.
2001;
10
5
- 2
Fullerton P M, Gilliatt R W.
Axon reflexes in human motor nerve fibres.
J Neurol Neurosurg Psychiatr.
1965;
28
1-11
- 3
Kugelberg E.
„Injury activity” and „trigger zones” in human nerves.
Brain.
1946;
69
310-324
- 4
Roth G.
Double discharge.
Schweiz Arch Neurol Neurochir Psychiatr.
1971;
108
261-272
- 5
Roth G.
Indirect double discharge.
EMG clin Neurophysiol.
1974;
14
235-241
- 6
Tomasulo R A.
Aberant conduction in human peripheral nerve: ephaptic transmission?.
Neurology.
1982;
32
712-719
- 7
Kornhuber M E, Hofmann M, Bischoff C, Conrad B.
A-waves evoked by nerve compression.
Electroenceph clin Neurophysiol.
1997;
103
141
- 8
Roth G, Magistris M.
Ephapse between two motor units in chronically denervated muscle.
EMG clin Neurophysiol.
1985;
25
331-339
- 9
Rowin J, Meriggioli M.
Electrodiagnostic significance of supramaximally stimulated A-waves.
Muscle & Nerve.
2000;
23
1117-1120
- 10
Bischoff C, Stålberg E, Falck B, Puksa L.
Significance of A-waves recorded in routine motor nerve conduction studies.
EEG clin Neurophysiol.
1996;
101
528-533
- 11
Roth G.
Midmotoraxonal reexitation in human peripheral nerve.
EMG clin Neurophysiol.
1985;
25
401-411
- 12
Kornhuber M E, Bischoff C, Mentrup H, Conrad B.
Multiple A waves in Guillain-Barré syndrome.
Muscle Nerve.
1999;
22
394-399
- 13
Puksa L, Stålberg E, Falck B.
Occurrence of A-waves in F-wave studies of healthy nerves.
Muscle Nerve.
2003;
28
626-629
- 14
Roth G.
Intranervous regeneration of lower motor neuron. 1. Study of 1153 motor axon reflexes.
EMG clin Neurophysiol.
1978;
8
225-288
- 15
Barrett E F, Barrett G DJ.
Intracellular recording from vertebrate myelinated axons: Mechanism of the depolarizing
afterpotential.
J Physiol.
1982;
323
117-144
- 16
Barrett G DJ, Barrett E F.
Activation of internodal potassium conductance in rat myelinated axons.
J Physiol.
1993;
472
177-202
- 17
Kornhuber M E, Bischoff C, Mentrup H. et al .
Multiple A-Waves in acute Guillain-Barré syndrome (GBS).
J Neurol.
1996;
243 (S2)
121
- 18
Gilchrist J M.
The axon reflex as ephaptic transmission: an hypothesis.
EMG clin Neurophysiol.
1988;
28
209-213
- 19
Magistris M R, Roth G.
Motor axon reflex and indirect double discharge: ephaptic transmission? A reappraisal.
EEG clin Neurophysiol.
1992;
85
124-130
- 20
Willison H J, Yuki N.
Peripheral Neuropathies and anti-glycolipid-antibodies.
Brain.
2002;
125
2591-2625
- 21
Katsuno M, Ando T, Hakusui S. et al .
Motor conduction studies in Miller Fisher syndrome with severe tetraparesis.
Muscle & Nerve.
2002;
25
378-382
- 22
Christova L G, Alexandrov A S, Ishpekova B A.
Peripheral late waves in patients with hereditary motor sensory neuropathy.
EMG clin Neurophysiol.
1999;
39
345-348
- 23
Nagado T, Arimura K, Sonoda Y. et al .
Potassium current suppression in patients with peripheral nerve hyperexcitability.
Brain.
1999;
122
2057-2066
- 24
Mateer J E, Gutmann L, McComas C F.
Myokymia in Guillain-Barré syndrome.
Neurology.
1983;
33
374-376
- 25
Preston D C, Kelly J J.
„Pseudospasticity” in Guillain-Barré syndrome.
Neurology.
1991;
41
131-134
- 26
Guillain-Barré Syndrome Study Group .
Plasmapheresis and acute Guillain-Barré syndrome.
Neurology.
1985;
35
1096-1104
- 27
Mamet J, Baron A, Lazdunski M, Voilley N.
Proinflammatory mediators, stimulators of sensory neuron excitability via the expression
of acid-sensing ion channels.
J Neurosci.
2002;
22
10662-10670
- 28
Kapoor R, Smith K J, Felts P A, Davies M.
Internodal potassium currents can generate ectopic impulses in mammalian myelinated
axons.
Brain Res.
1993;
611
165-169
- 29
Morimatsu H, Uchino S, Bellomo R, Ronco C.
Continuous renal replacement therapy: does technique influence electrolyte and bicarbonate
control?.
Int J Art Organs.
2003;
26
296
- 30
Plasma exchange/Sandoglobulin Guillain-Barré Syndrome trial group .
Randomised trial of plasma exchange, intravenous immunoglobulin, and combined treatments
in Guillain-Barré syndrome.
Lancet.
1997;
349
225-230
PD Dr. med. Malte E. Kornhuber
Klinik und Poliklinik für Neurologie der Universität Halle/Saale · Klinikum Kröllwitz
Ernst-Grube-Straße 40
06097 Halle/Saale
Email: malte.kornhuber@medizin.uni-halle.de