Geburtshilfe Frauenheilkd 2006; 66(9): 841-851
DOI: 10.1055/s-2006-924283
Übersicht

Georg Thieme Verlag KG Stuttgart · New York

Metabolismus und Mammakarzinom

Breast Cancer and MetabolismG. H. Pfeiler1 , C. Lattrich1 , C. Schambeck2 , T. Langmann2 , O. Treeck1 , O. Ortmann1
  • 1Klinik für Frauenheilkunde und Geburtshilfe, Caritas Krankenhaus St. Josef, Universität Regensburg, Regensburg
  • 2Institut für Klinische Chemie und Laboratoriumsmedizin, Universität Regensburg, Regensburg
Weitere Informationen

Publikationsverlauf

Eingang Manuskript: 2.3.2006 Eingang revidiertes Manuskript: 7.4.2006

Akzeptiert: 10.5.2006

Publikationsdatum:
12. September 2006 (online)

Zusammenfassung

In den letzten Jahren hat der Zusammenhang zwischen metabolischen Störungen und dem Mammakarzinomrisiko zunehmendes Interesse gewonnen. Die Adipositas ist mit einem gesteigerten Brustkrebsrisiko assoziiert. Die Zunahme an Fettgewebe führt zu vermehrter extraglandulärer Östrogenbiosynthese, kann in erhöhten Serumspiegeln freier Fettsäuren (FFA) resultieren und zeigt einen starken Zusammenhang mit Insulinresistenz und somit Hyperinsulinämie. Östrogene, FFA und Insulin fördern das Wachstum von Brustkrebszellen und erhöhte Plasmaspiegel konnten in Beobachtungsstudien positiv mit dem Mammakarzinomrisiko korreliert werden. Adipozyten sezernieren zudem Adipokine, wie Adiponectin, Leptin, TNFα und IL-6, die das Wachstum von Brustkrebszellen auf unterschiedliche Weise beeinflussen können. Die vorliegende Übersichtsarbeit fasst den derzeitigen Kenntnisstand zum Zusammenhang zwischen Metabolismus und dem Mammakarzinomrisiko zusammen.

Abstract

Metabolic disorders are known to affect the risk for breast cancer. Obesity affects the risk and prognosis of different kinds of cancers, including breast cancer. Metabolic changes, such as increased estrogen biosynthesis, elevated serum free fatty acids (FFA), or hyperinsulinemia, associated with the metabolic syndrome are considered to be responsible for the effects of obesity on breast cancer. Furthermore, white adipose tissue secretes a wide range of biologically active peptides, including adiponectin, leptin, TNFα and IL-6. These adipocytokines have been shown to be involved in the development and progression of breast cancer. The focus of this review is to summarize the current knowledge on metabolic disorders as risk factors for breast cancer.

Literatur

  • 1 Parkin D M. International variation.  Oncogene. 2004;  23 6329-6340
  • 2 Bray F, Sankila R, Ferlay J, Parkin D M. Estimates of cancer incidence and mortality in Europe in 1995.  Eur J Cancer. 2002;  38 99-166
  • 3 Key T J, Pike M C. The role of oestrogens and progestagens in the epidemiology and prevention of breast cancer.  Eur J Cancer Clin Oncol. 1988;  24 29-43
  • 4 Dao T L. The role of ovarian steroid hormones in mammary carcinogenesis. Pike MC, Siiteri PK, Welsch CW Hormones and Breast Cancer. Banbury Report No. 8. Cold Spring Harbor (NY); Cold Spring Harbor Laboratory 1981: 281-295
  • 5 Ackerman G E, Smith M E, Mendelson C R, MacDonald P C, Simpson E R. Aromatization of androstenedione by human adipose tissue stromal cells in monolayer culture.  J Clin Endocrinol Metab. 1981;  53 412-417
  • 6 Miller W R, Forrest A P. Oestradiol synthesis by a human breast carcinoma.  Lancet. 1974;  2 866-868
  • 7 De Waard F, Baanders-Vanhalewijn E A, Huizinga J. The bimodal age distribution of patients with mammary carcinoma; evidence for the existence of 2 types of human breast cancer.  Cancer. 1964;  17 141-151
  • 8 Bruning P F, Bonfrer J M, Hart A A, van Noord P A, van der Hoeven H, Collette H J, Battermann J J, de Jong-Bakker M, Nooijen W J, de Waard F. Body measurements, estrogen availability and the risk of human breast cancer: a case-control study.  Int J Cancer. 1992;  51 14-19
  • 9 Friedmann J M. Obesity in the new millennium.  Nature. 2000;  404 632-634
  • 10 Hu E, Liang P, Spiegelman B M. AdipoQ is a novel adipose-specific gene dysregulated in obesity.  J Biol Chem. 1996;  271 10697-10703
  • 11 Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1).  Biochem Biophys Res Commun. 1996;  221 286-289
  • 12 Weisberg S P, McCann D, Desai M, Rosenbaum M, Leibel R L, Ferrante Jr A W. Obesity is associated with macrophage accumulation in adipose tissue.  J Clin Invest. 2003;  112 1796-1808
  • 13 Kern P A, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance.  Am J Physiol Endocrinol Metab. 2001;  280 E745-E751
  • 14 Green A, Hougaard P. Epidemiological studies of diabetes mellitus in Denmark: 5. Mortality and causes of death among insulin-treated diabetic patients.  Diabetologia. 1984;  26 190-194
  • 15 Yancik R, Wesley M N, Ries L A, Havlik R J, Edwards B K, Yates J W. Effect of age and comorbidity in postmenopausal breast cancer patients aged 55 years and older.  JAMA. 2001;  285 885-892
  • 16 Michels K B, Solomon C G, Hu F B, Rosner B A, Hankinson S E, Colditz G A, Manson J E. Nurses' Health Study . Type 2 diabetes and subsequent incidence of breast cancer in the Nurses' Health Study.  Diabetes Care. 2003;  26 1752-1758
  • 17 Calle E E, Rodriguez C, Walker-Thurmond K, Thun M J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults.  N Engl J Med. 2003;  348 1625-1638
  • 18 Carroll K K. Obesity as a risk factor for certain types of cancer.  Lipids. 1998;  33 1055-1059
  • 19 Bergstrom A, Pisani P, Tenet V, Wolk A, Adami H O. Overweight as an avoidable cause of cancer in Europe.  Int J Cancer. 2001;  91 421-430
  • 20 Peto J. Cancer epidemiology in the last century and the next decade.  Nature. 2001;  411 390-395
  • 21 Michaud D S, Giovannucci E, Willett W C, Colditz G A, Stampfer M J, Fuchs C S. Physical activity, obesity, height, and the risk of pancreatic cancer.  JAMA. 2001;  286 921-929
  • 22 Wolk A, Gridley G, Svensson M, Nyren O, McLaughlin J K, Fraumeni J F, Adam H O. A prospective study of obesity and cancer risk (Sweden).  Cancer Causes Control. 2001;  12 13-21
  • 23 Moller H, Mellemgaard A, Lindvig K, Olsen J H. Obesity and cancer risk: a Danish record-linkage study.  Eur J Cancer. 1994;  30 A 344-350
  • 24 IARC Working Group on the Evaluation of Cancer-Preventive Agents .Weight Control and Physical Activity, IARC Handbooks of Cancer Prevention, Volume 6. Lyon, France; IARC 2002
  • 25 van den Brandt P A, Spiegelman D, Yaun S S, Adami H O, Beeson L, Folsom A R, Fraser G, Goldbohm R A, Graham S, Kushi L, Marshall J R, Miller A B, Rohan T, Smith-Warner S A, Speizer F E, Willett W C, Wolk A, Hunter D J. Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk.  Am J Epidemiol. 2000;  152 514-527
  • 26 Paffenbarger Jr R S, Kampert J B, Chang H G. Characteristics that predict risk of breast cancer before and after the menopause.  Am J Epidemiol. 1980;  112 258-268
  • 27 Swanson C A, Coates R J, Schoenberg J B, Malone K E, Gammon M D, Stanford J L, Shorr I J, Potischman N A, Brinton L A. Body size and breast cancer risk among women under age 45 years.  Am J Epidemiol. 1996;  143 698-706
  • 28 Franceschi S, Favero A, La Vecchia C, Baron A E, Negri E, Dal Maso L, Giacosa A, Montella M, Conti E, Amadori D. Body size indices and breast cancer risk before and after menopause.  Int J Cancer. 1996;  67 181-186
  • 29 Ursin G, Longnecker M P, Haile R W, Greenland S. A meta-analysis of body mass index and risk of premenopausal breast cancer.  Epidemiology. 1995;  6 137-141
  • 30 Potischman N, Swanson C A, Siiteri P, Hoover R N. Reversal of relation between body mass and endogenous estrogen concentrations with menopausal status.  J Natl Cancer Inst. 1996;  88 756-758
  • 31 Lahmann P H, Schulz M, Hoffmann K, Boeing H, Tjonneland A, Olsen A, Overvad K, Key T J, Allen N E, Khaw K T, Bingham S, Berglund G, Wirfalt E, Berrino F, Krogh V, Trichopoulou A, Lagiou P, Trichopoulos D, Kaaks R, Riboli E. Long-term weight change and breast cancer risk: the European prospective investigation into cancer and nutrition (EPIC).  Br J Cancer. 2005;  93 582-589
  • 32 Chang S, Buzdar A U, Hursting S D. Inflammatory breast cancer and body mass index.  J Clin Oncol. 1998;  16 3731-3735
  • 33 Harvie M, Hooper L, Howell A H. Central obesity and breast cancer risk: a systematic review.  Obes Rev. 2003;  4 157-173
  • 34 Mannisto S, Pietinen P, Pyy M, Palmgren J, Eskelinen M, Uusitupa M. Body-size indicators and risk of breast cancer according to menopause and estrogen-receptor status.  Int J Cancer. 1996;  68 8-13
  • 35 Collaborative Group on Hormonal Factors in Breast Cancer . Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52705 women with breast cancer and 108411 women without breast cancer. Collaborative Group on Hormonal Factors in Breast Cancer.  Lancet. 1997;  350 1047-1059
  • 36 Petrelli J M, Calle E E, Rodriguez C, Thun M J. Body mass index, height, and postmenopausal breast cancer mortality in a prospective cohort of US women.  Cancer Causes Control. 2002;  13 325-332
  • 37 Feigelson H S, Jonas C R, Teras L R, Thun M J, Calle E E. Weight gain, body mass index, hormone replacement therapy, and postmenopausal breast cancer in a large prospective study.  Cancer Epidemiol Biomarkers Prev. 2004;  13 220-224
  • 38 Schapira D V, Kumar N B, Lyman G H. Estimate of breast cancer risk reduction with weight loss.  Cancer. 1991;  67 2622-2625
  • 39 Evans R M. The steroid and thyroid hormone receptor superfamily.  Science. 1988;  240 889-895
  • 40 Klotz D M, Hewitt S C, Ciana P, Raviscioni M, Lindzey J K, Foley J, Maggi A, DiAugustine R P, Korach K S. Requirement of estrogen receptor-alpha in insulin-like growth factor-1 (IGF‐1)-induced uterine responses and in vivo evidence for IGF‐1/estrogen receptor cross-talk.  J Biol Chem. 2002;  277 8531-8537
  • 41 Macaluso M, Cinti C, Russo G, Russo A, Giordano A. pRb2/p 130-E2F4/5-HDAC1-SUV39H1-p 300 and pRb2/p 130-E2F4/5-HDAC1-SUV39H1-DNMT1 multimolecular complexes mediate the transcription of estrogen receptor-alpha in breast cancer.  Oncogene. 2003;  22 3511-3517
  • 42 Henderson B E, Ross R, Bernstein L. Estrogens as a cause of human cancer: the Richard and Hinda Rosenthal Foundation award lecture.  Cancer Res. 1988;  48 246-253
  • 43 Feigelson H S, Ross R K, Yu M C, Coetzee G A, Reichardt J K, Henderson B E. Genetic susceptibility to cancer from exogenous and endogenous exposures.  J Cell Biochem Suppl . 1996;  25 15-22
  • 44 Foster J S, Wimalasena J. Estrogen regulates activity of cyclin-dependent kinases and retinoblastoma protein phosphorylation in breast cancer cells.  Mol Endocrinol. 1996;  10 488-498
  • 45 Prall O W, Sarcevic B, Musgrove E A, Watts C K, Sutherland R L. Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2.  J Biol Chem. 1997;  272 10882-10894
  • 46 Altucci L, Addeo R, Cicatiello L, Dauvois S, Parker M G, Truss M, Beato M, Sica V, Bresciani F, Weisz A. 17beta-Estradiol induces cyclin D1 gene transcription, p 36D1-p 34cdk4 complex activation and p 105Rb phosphorylation during mitogenic stimulation of G(1)-arrested human breast cancer cells.  Oncogene. 1996;  12 2315-2324
  • 47 Planas-Silva M D, Weinberg R A. Estrogen-dependent cyclin E-cdk2 activation through p 21 redistribution.  Mol Cell Biol. 1997;  17 4059-4069
  • 48 Lupulescu A. Estrogen use and cancer incidence: a review.  Cancer Invest. 1995;  13 287-295
  • 49 Pike M C, Spicer D V, Dahmoush L, Press M F. Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk.  Epidemiol Rev. 1993;  15 17-35
  • 50 Rosner B, Colditz G A. Nurses' health study: log-incidence mathematical model of breast cancer incidence.  J Natl Cancer Inst. 1996;  88 359-364
  • 51 Clemons M, Goss P. Estrogen and the risk of breast cancer.  N Engl J Med. 2001;  344 276-285
  • 52 Bonney R C, Reed M J, Davidson K, Beranek P A, James V H. The relationship between 17 beta-hydroxysteroid dehydrogenase activity and oestrogen concentrations in human breast tumours and in normal breast tissue.  Clin Endocrinol (Oxf). 1983;  19 727-739
  • 53 Blankenstein M A, Maitimu-Smeele I, Donker G H, Daroszewski J, Milewicz A, Thijssen J H. On the significance of in situ production of oestrogens in human breast cancer tissue.  J Steroid Biochem Mol Biol. 1992;  41 891-896
  • 54 Abul-Hajj Y J, Iverson R, Kiang D T. Aromatization of androgens by human breast cancer.  Steroids. 1979;  33 205-222
  • 55 Lipton A, Santner S J, Santen R J, Harvey H A, Feil P D, White-Hershey D, Bartholomew M J, Antle C E. Aromatase activity in primary and metastatic human breast cancer.  Cancer. 1987;  59 779-782
  • 56 Dao T L, Hayes C, Libby P R. Steroid sulfatase activities in human breast tumors.  Proc Soc Exp Biol Med. 1974;  146 381-384
  • 57 Pasqualini J R, Gelly C, Lecerf F. Estrogen sulfates: biological and ultrastructural responses and metabolism in MCF‐7 human breast cancer cells.  Breast Cancer Res Treat. 1986;  8 233-240
  • 58 Pasqualini J R, Gelly C, Nguyen B L, Vella C. Importance of estrogen sulfates in breast cancer.  J Steroid Biochem. 1989;  34 155-163
  • 59 Pasqualini J R, Chetrite G, Blacker C, Feinstein M C, Delalonde L, Talbi M, Maloche C. Concentrations of estrone, estradiol, and estrone sulfate and evaluation of sulfatase and aromatase activities in pre- and postmenopausal breast cancer patients.  J Clin Endocrinol Metab. 1996;  81 1460-1464
  • 60 Loriaux D L, Ruder H J, Lipsett M B. The measurement of estrone sulfate in plasma.  Steroids. 1971;  18 463-472
  • 61 Pasqualini J R, Gelly C, Lecerf F. Biological effects and morphological responses to estriol, estriol-3-sulfate, estriol-17-sulfate and tamoxifen in a tamoxifen-resistant cell line (R‐27) derived from MCF‐7 human breast cancer cells.  Eur J Cancer Clin Oncol. 1986;  22 1495-1501
  • 62 Davidson B J, Gambone J C, Lagasse L D, Castaldo T W, Hammond G L, Siiteri P K, Judd H L. Free estradiol in postmenopausal women with and without endometrial cancer.  J Clin Endocrinol Metab. 1981;  52 404-408
  • 63 Vignon F, Terqui M, Westley B, Derocq D, Rochefort H. Effects of plasma estrogen sulfates in mammary cancer cells.  Endocrinology. 1980;  106 1079-1086
  • 64 MacIndoe J H. The hydrolysis of estrone sulfate and dehydroepiandrosterone sulfate by MCF‐7 human breast cancer cells.  Endocrinology. 1988;  123 1281-1287
  • 65 Pasqualini J R, Maloche C, Maroni M, Chetrite G. Effect of the progestagen promegestone (R-5020) on mRNA of the oestrone sulphatase in the MCF‐7 human mammary cancer cells.  Anticancer Res. 1994;  14 1589-1593
  • 66 Utsumi T, Yoshimura N, Takeuchi S, Maruta M, Maeda K, Harada N. Elevated steroid sulfatase expression in breast cancers.  J Steroid Biochem Mol Biol. 2000;  73 141-145
  • 67 Falany J L, Falany C N. Expression of cytosolic sulfotransferases in normal mammary epithelial cells and breast cancer cell lines.  Cancer Res. 1996;  56 1551-1555
  • 68 Falany C N, Wheeler J, Oh T S, Falany J L. Steroid sulfation by expressed human cytosolic sulfotransferases.  J Steroid Biochem Mol Biol. 1994;  48 369-375
  • 69 Malet C, Gompel A, Yaneva H, Cren H, Fidji N, Mowszowicz I, Kuttenn F, Mauvais-Jarvis P. Estradiol and progesterone receptors in cultured normal human breast epithelial cells and fibroblasts: immunocytochemical studies.  J Clin Endocrinol Metab. 1991;  73 8-17
  • 70 Singh A, Purohit A, Duncan L J, Mokbel K, Ghilchik M W, Reed M J. Control of aromatase activity in breast tumours: the role of the immune system.  J Steroid Biochem Mol Biol. 1997;  61 185-192
  • 71 Reed M J, Owen A M, Lai L C, Coldham N G, Ghilchik M W, Shaikh N A, James V H. In situ oestrone synthesis in normal breast and breast tumour tissues: effect of treatment with 4-hydroxyandrostenedione.  Int J Cancer. 1989;  44 233-237
  • 72 Yue W, Wang J P, Hamilton C J, Demers L M, Santen R J. In situ aromatization enhances breast tumor estradiol levels and cellular proliferation.  Cancer Res. 1998;  58 927-932
  • 73 Czyzyk A, Szczepanik Z. Diabetes mellitus and cancer.  Eur J Intern Med. 2000;  11 245-252
  • 74 Verkasalo P K, Thomas H V, Appleby P N, Davey G K, Key T J. Circulating levels of sex hormones and their relation to risk factors for breast cancer: a cross-sectional study in 1092 pre- and postmenopausal women (United Kingdom).  Cancer Causes Control. 2001;  12 47-59
  • 75 Matsuzawa Y, Funahashi T, Nakamura T. Molecular mechanism of metabolic syndrome X: contribution of adipocytokines adipocyte-derived bioactive substances.  Ann N Y Acad Sci. 1999;  892 146-154
  • 76 Scherer P E, Williams S, Fogliano M, Baldini G, Lodish H F. A novel serum protein similar to C1 q, produced exclusively in adipocytes.  J Biol Chem. 1995;  270 26746-26749
  • 77 Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, Kihara S, Funahashi T, Tenner A J, Tomiyama Y, Matsuzawa Y. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages.  Blood. 2000;  96 1723-1732
  • 78 Arita Y, Kihara S, Ouchi N, Maeda K, Kuriyama H, Okamoto Y, Kumada M, Hotta K, Nishida M, Takahashi M, Nakamura T, Shimomura I, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell.  Circulation. 2002;  105 2893-2898
  • 79 Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman M L, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity.  Nat Med. 2001;  7 941-946
  • 80 Berg A H, Combs T P, Du X, Brownlee M, Scherer P E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action.  Nat Med. 2001;  7 947-953
  • 81 Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients.  Arterioscler Thromb Vasc Biol. 2000;  20 1595-1599
  • 82 Yang W S, Lee W J, Funahashi T, Tanaka S, Matsuzawa Y, Chao C L, Chen C L, Tai T Y, Chuang L M. Plasma adiponectin levels in overweight and obese Asians.  Obes Res. 2002;  10 1104-1110
  • 83 Mantzoros C, Petridou E, Dessypris N, Chavelas C, Dalamaga M, Alexe D M, Papadiamantis Y, Markopoulos C, Spanos E, Chrousos G, Trichopoulos D. Adiponectin and breast cancer risk.  J Clin Endocrinol Metab. 2004;  89 1102-1107
  • 84 Miyoshi Y, Funahashi T, Kihara S, Taguchi T, Tamaki Y, Matsuzawa Y, Noguchi S. Association of serum adiponectin levels with breast cancer risk.  Clin Cancer Res. 2003;  9 5699-5704
  • 85 Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman J M. Positional cloning of the mouse obese gene and its human homologue.  Nature. 1994;  372 425-432
  • 86 Sinha M K, Opentanova I, Ohannesian J P, Kolaczynski J W, Heiman M L, Hale J, Becker G W, Bowsher R R, Stephens T W, Caro J F. Evidence of free and bound leptin in human circulation. Studies in lean and obese subjects and during short-term fasting.  J Clin Invest. 1996;  98 1277-1282
  • 87 McGregor G P, Desaga J F, Ehlenz K, Fischer A, Heese F, Hegele A, Lammer C, Peiser C, Lang R E. Radiommunological measurement of leptin in plasma of obese and diabetic human subjects.  Endocrinology. 1996;  137 1501-1504
  • 88 Catalano S, Marsico S, Giordano C, Mauro L, Rizza P, Panno M L, Ando S. Leptin enhances, via AP‐1, expression of aromatase in the MCF‐7 cell line.  J Biol Chem. 2003;  278 28668-28676
  • 89 O'brien S N, Welter B H, Price T M. Presence of leptin in breast cell lines and breast tumors.  Biochem Biophys Res Commun. 1999;  259 695-698
  • 90 Hu X, Juneja S C, Maihle N J, Cleary M P. Leptin - a growth factor in normal and malignant breast cells and for normal mammary gland development.  J Natl Cancer Inst. 2002;  94 1704-1711
  • 91 Cleary M P, Juneja S C, Phillips F C, Hu X, Grande J P, Maihle N J. Leptin receptor-deficient MMTV‐TGF-alpha/Lepr(db)Lepr(db) female mice do not develop oncogene-induced mammary tumors.  Exp Biol Med (Maywood). 2004;  229 182-193
  • 92 Tessitore L, Vizio B, Jenkins O, De Stefano I, Ritossa C, Argiles J M, Benedetto C, Mussa A. Leptin expression in colorectal and breast cancer patients.  Int J Mol Med. 2000;  5 421-426
  • 93 Mantzoros C S, Bolhke K, Moschos S, Cramer D W. Leptin in relation to carcinoma in situ of the breast: a study of pre-menopausal cases and controls.  Int J Cancer. 1999;  80 523-526
  • 94 Lind D S, Tuttle T M, Bethke K P, Frank J L, McCrady C W, Bear H D. Expansion and tumour specific cytokine secretion of bryostatin-activated T-cells from cryopreserved axillary lymph nodes of breast cancer patients.  Surg Oncol. 1993;  2 273-82
  • 95 Rozen F, Zhang J, Pollak M. Antiproliferative action of tumor necrosis factor-alpha on MCF‐7 breast cancer cells is associated with increased insulin-like growth factor binding protein-3 accumulation.  Int J Oncol. 1998;  13 865-869
  • 96 Pagliacci M C, Fumi G, Migliorati G, Grignani F, Riccardi C, Nicoletti I. Cytostatic and cytotoxic effects of tumor necrosis factor alpha on MCF‐7 human breast tumor cells are differently inhibited by glucocorticoid hormones.  Lymphokine Cytokine Res. 1993;  12 439-447
  • 97 Purohit A, Reed M J. Regulation of estrogen synthesis in postmenopausal women.  Steroids. 2002;  67 979-983
  • 98 Fajardo L F, Kwan H H, Kowalski J, Prionas S D, Allison A C. Dual role of tumor necrosis factor-alpha in angiogenesis.  Am J Pathol. 1992;  140 539-544
  • 99 Weitsman G E, Ravid A, Liberman U A, Koren R. Vitamin D enhances caspase-dependent and ‐independent TNFalpha-induced breast cancer cell death: The role of reactive oxygen species and mitochondria.  Int J Cancer. 2003;  106 178-186
  • 100 Lee P P, Hwang J J, Murphy G, Ip M M. Functional significance of MMP‐9 in tumor necrosis factor-induced proliferation and branching morphogenesis of mammary epithelial cells.  Endocrinology. 2000;  141 3764-3773
  • 101 Leek R D, Landers R, Fox S B, Ng F, Harris A L, Lewis C E. Association of tumour necrosis factor alpha and its receptors with thymidine phosphorylase expression in invasive breast carcinoma.  Br J Cancer. 1998;  77 2246-2251
  • 102 Meisser A, Cameo P, Islami D, Campana A, Bischof P. Effects of interleukin-6 (IL‐6) on cytotrophoblastic cells.  Mol Hum Reprod. 1999;  5 1055-1058
  • 103 Salgado R, Junius S, Benoy I, Van Dam P, Vermeulen P, Van Marck E, Huget P, Dirix L Y. Circulating interleukin-6 predicts survival in patients with metastatic breast cancer.  Int J Cancer. 2003;  103 642-646
  • 104 DECODE Study Group . Age- and sex-specific prevalences of diabetes and impaired glucose regulation in 13 European cohorts.  Diabetes Care. 2003;  26 61-69
  • 105 Weiderpass E, Gridley G, Persson I, Nyren O, Ekbom A, Adami H O. Risk of endometrial and breast cancer in patients with diabetes mellitus.  Int J Cancer. 1997;  71 360-363
  • 106 Milazzo G, Giorgino F, Damante G, Sung C, Stampfer M R, Vigneri R, Goldfine I D, Belfiore A. Insulin receptor expression and function in human breast cancer cell lines.  Cancer Res. 1992;  52 3924-3930
  • 107 Yenush L, White M F. The IRS-signalling system during insulin and cytokine action.  Bioessays. 1997;  19 491-500
  • 108 Jackson J G, White M F, Yee D. Insulin receptor substrate-1 is the predominant signaling molecule activated by insulin-like growth factor-I, insulin, and interleukin-4 in estrogen receptor-positive human breast cancer cells.  J Biol Chem. 1998;  273 9994-10003
  • 109 Lai A, Sarcevic B, Prall O W, Sutherland R L. Insulin/insulin-like growth factor-I and estrogen cooperate to stimulate cyclin E-Cdk2 activation and cell Cycle progression in MCF‐7 breast cancer cells through differential regulation of cyclin E and p 21(WAF1/Cip1).  J Biol Chem. 2001;  276 25823-25833
  • 110 Goodwin P J, Ennis M, Pritchard K I, Trudeau M E, Koo J, Madarnas Y, Hartwick W, Hoffman B, Hood N. Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study.  J Clin Oncol. 2002;  20 42-51
  • 111 Godden J, Leake R, Kerr D J. The response of breast cancer cells to steroid and peptide growth factors.  Anticancer Res. 1992;  12 1683-1688
  • 112 Chappell J, Leitner J W, Solomon S, Golovchenko I, Goalstone M L, Draznin B. Effect of insulin on cell cycle progression in MCF‐7 breast cancer cells. Direct and potentiating influence.  J Biol Chem. 2001;  276 38023-38028
  • 113 Sepp-Lorenzino L, Rosen N, Lebwohl D E. Insulin and insulin-like growth factor signaling are defective in the MDA MB‐468 human breast cancer cell line.  Cell Growth Differ. 1994;  5 1077-1083
  • 114 Wolf I, Seger R. The mitogen-activated protein kinase signaling cascade: from bench to bedside.  Isr Med Assoc J. 2002;  4 641-647
  • 115 Papa V, Reese C C, Brunetti A, Vigneri R, Siiteri P K, Goldfine I D. Progestins increase insulin receptor content and insulin stimulation of growth in human breast carcinoma cells.  Cancer Res. 1990;  50 7858-7862
  • 116 Webster N J, Resnik J L, Reichart D B, Strauss B, Haas M, Seely B L. Repression of the insulin receptor promoter by the tumor suppressor gene product p 53: a possible mechanism for receptor overexpression in breast cancer.  Cancer Res. 1996;  56 2781-2788
  • 117 Frittitta L, Cerrato A, Sacco M G, Weidner N, Goldfine I D, Vigneri R. The insulin receptor content is increased in breast cancers initiated by three different oncogenes in transgenic mice.  Breast Cancer Res Treat. 1997;  45 141-147
  • 118 Frittitta L, Vigneri R, Stampfer M R, Goldfine I D. Insulin receptor overexpression in 184B5 human mammary epithelial cells induces a ligand-dependent transformed phenotype.  J Cell Biochem. 1995;  57 666-669
  • 119 Papa V, Pezzino V, Costantino A, Belfiore A, Giuffrida D, Frittitta L, Vannelli G B, Brand R, Goldfine I D, Vigneri R. Elevated insulin receptor content in human breast cancer.  J Clin Invest. 1990;  86 1503-1510
  • 120 Renehan A G, Zwahlen M, Minder C, O'Dwyer S T, Shalet S M, Egger M. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis.  Lancet. 2004;  363 1346-1353
  • 121 Rubin R, Baserga R. Insulin-like growth factor-I receptor. Its role in cell proliferation, apoptosis, and tumorigenicity.  Lab Invest. 1995;  73 311-331
  • 122 Takahashi T, Ohmichi M, Kawagoe J, Ohshima C, Doshida M, Ohta T, Saitoh M, Mori-Abe A, Du B, Igarashi H, Takahashi K, Kurachi H. Growth factors change nuclear distribution of estrogen receptor-{alpha} via MAP kinase or PI3 kinase cascade in a human breast cancer cell line.  Endocrinology. 2005;  146 4082-4089
  • 123 Clemmons D R, Underwood L E. Nutritional regulation of IGF‐I and IGF binding proteins.  Annu Rev Nutr. 1991;  11 393-412
  • 124 Hankinson S E, Willett W C, Colditz G A, Hunter D J, Michaud D S, Deroo B, Rosner B, Speizer F E, Pollak M. Circulating concentrations of insulin-like growth factor-I and risk of breast cancer.  Lancet. 1998;  351 1393-1396
  • 125 Krajcik R A, Borofsky N D, Massardo S, Orentreich N. Insulin-like growth factor I (IGF‐I), IGF-binding proteins, and breast cancer.  Cancer Epidemiol Biomarkers Prev. 2002;  11 1566-1573
  • 126 Siddle K, Urso B, Niesler C A, Cope D L, Molina L, Surinya K H, Soos M A. Specificity in ligand binding and intracellular signalling by insulin and insulin-like growth factor receptors.  Biochem Soc Trans. 2001;  29(Pt 4) 513-525
  • 127 Bergh C, Carlsson B, Olsson J H, Selleskog U, Hillensjo T. Regulation of androgen production in cultured human thecal cells by insulin-like growth factor I and insulin.  Fertil Steril. 1993;  59 323-331
  • 128 Fottner C, Engelhardt D, Weber M M. Regulation of steroidogenesis by insulin-like growth factors (IGFs) in adult human adrenocortical cells: IGF‐I and, more potently, IGF‐II preferentially enhance androgen biosynthesis through interaction with the IGF‐I receptor and IGF-binding proteins.  J Endocrinol. 1998;  158 409-417
  • 129 Fay M P, Freedman L S, Clifford C K, Midthune D N. Effect of different types and amounts of fat on the development of mammary tumors in rodents: a review.  Cancer Res. 1997;  57 3979-3988
  • 130 Rose D P. Effects of dietary fatty acids on breast and prostate cancers: evidence from in vitro experiments and animal studies.  Am J Clin Nutr. 1997;  66 1513S-1522S
  • 131 Hardy S, Langelier Y, Prentki M. Oleate activates phosphatidylinositol 3-kinase and promotes proliferation and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects.  Cancer Res. 2000;  60 6353-6358
  • 132 Kaplan D R, Whitman M, Schaffhausen B, Pallas D C, White M, Cantley L, Roberts T M. Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity.  Cell. 1987;  50 1021-1029
  • 133 Hardy S, El-Assaad W, Przybytkowski E, Joly E, Prentki M, Langelier Y. Saturated fatty acid-induced apoptosis in MDA‐MB‐231 breast cancer cells. A role for cardiolipin.  J Biol Chem. 2003;  278 31861-31870
  • 134 Choi S, Swanson J M. Interaction of cytochrome c with cardiolipin: an infrared spectroscopic study.  Biophys Chem. 1995;  54 271-278
  • 135 Pardoll D. T cells and tumours.  Nature. 2001;  411 1010-1012
  • 136 Richieri G V, Mescher M F, Kleinfeld A M. Short term exposure to cis unsaturated free fatty acids inhibits degranulation of cytotoxic T lymphocytes.  J Immunol. 1990;  144 671-677
  • 137 Kleinfeld A M, Okada C. Free fatty acid release from human breast cancer tissue inhibits cytotoxic T lymphocyte-mediated killing.  J Lipid Res. 2005;  46 1983-1990
  • 138 El-Sohemy A, Archer M C. Inhibition of N-methyl-N-nitrosourea- and 7,12-dimethylbenz[a] anthracene-induced rat mammary tumorigenesis by dietary cholesterol is independent of Ha-Ras mutations.  Carcinogenesis. 2000;  21 827-831
  • 139 Bennis F, Favre G, Le Gaillard F, Soula G. Importance of mevalonate-derived products in the control of HMG‐CoA reductase activity and growth of human lung adenocarcinoma cell line A549.  Int J Cancer. 1993;  55 640-645
  • 140 Kawata S, Takaishi K, Nagase T, Ito N, Matsuda Y, Tamura S, Matsuzawa Y, Tarui S. Increase in the active form of 3-hydroxy-3-methylglutaryl coenzyme A reductase in human hepatocellular carcinoma: possible mechanism for alteration of cholesterol biosynthesis.  Cancer Res. 1990;  50 3270-3273
  • 141 Quesney-Huneeus V, Wiley M H, Siperstein M D. Essential role for mevalonate synthesis in DNA replication.  Proc Natl Acad Sci U S A. 1979;  76 5056-5060
  • 142 Duncan R E, El-Sohemy A, Archer M C. Mevalonate promotes the growth of tumors derived from human cancer cells in vivo and stimulates proliferation in vitro with enhanced cyclin-dependent kinase-2 activity.  J Biol Chem. 2004;  279 33079-33084
  • 143 Keyomarsi K, Sandoval L, Band V, Pardee A B. Synchronization of tumor and normal cells from G1 to multiple cell cycles by lovastatin.  Cancer Res. 1991;  51 3602-3609
  • 144 Melhem M F, Gabriel H F, Eskander E D, Rao K N. Cholestyramine promotes 7,12-dimethylbenzanthracene induced mammary cancer in Wistar rats.  Br J Cancer. 1987;  56 45-48
  • 145 Rao K N, Melhem M F, Gabriel H F, Eskander E D, Kazanecki M E, Amenta J S. Lipid composition and de novo cholesterogenesis in normal and neoplastic rat mammary tissues.  J Natl Cancer Inst. 1988;  80 1248-1253
  • 146 Rotheneder M, Kostner G M. Effects of low- and high-density lipoproteins on the proliferation of human breast cancer cells in vitro: differences between hormone-dependent and hormone-independent cell lines.  Int J Cancer. 1989;  43 875-879
  • 147 Cao W M, Murao K, Imachi H, Yu X, Abe H, Yamauchi A, Niimi M, Miyauchi A, Wong N C, Ishida T. A mutant high-density lipoprotein receptor inhibits proliferation of human breast cancer cells.  Cancer Res. 2004;  64 1515-1521
  • 148 Gregorio D I, Emrich L J, Graham S, Marshall J R, Nemoto T. Dietary fat consumption and survival among women with breast cancer.  J Natl Cancer Inst. 1985;  75 37-41
  • 149 Zhang S, Folsom A R, Sellers T A, Kushi L H, Potter J D. Better breast cancer survival for postmenopausal women who are less overweight and eat less fat. The Iowa Women's Health Study.  Cancer. 1995;  76 275-283
  • 150 Kyogoku S, Hirohata T, Nomura Y, Shigematsu T, Takeshita S, Hirohata I. Diet and prognosis of breast cancer.  Nutr Cancer. 1992;  17 271-277
  • 151 Kaaks R. Lundin E, Manjer J, Rinaldi S, Biessy C, Soderberg S, Lenner P, Janzon L, Riboli E, Berglund G, Hallmans G. Prospective study of IGF‐I, IGF- binding proteins, and breast cancer risk, in Northern and Southern Sweden.  Cancer Causes Control. 2002;  13 307-316
  • 152 Schairer C, Hill D, Sturgeon S, Fears T, Pollak M, Mies C, Ziegler R, Hoover R, Sherman M. Serum concentration of IGF‐I, IGFBP‐3 and C-peptide and risk of hyperplasia and cancer of the breast in postmenopausal women.  Int J Cancer. 2004;  108 773-779
  • 153 Dale K M, Coleman C I, Henyan N N, Kluger J, White C M. Statins and cancer risk: a meta-analysis.  JAMA. 2006;  295 74-80
  • 154 Zhu B T, Connery A H. Is 2-methoxyestradiol an endogenous metabolite that inhibits mammary carcinogenesis?.  Cancer Res. 1998;  58 2269-2277
  • 155 Seeger H, Wallwiener D, Kraemer E, Mueck A O. Comparison of possible carcinogenic estradiol metabolites: Effects on proliferation, apoptosis and metastasis of human breast cancer cells.  Maturitas. 2006;  54 (1) 72-77
  • 156 Seeger H, Wallwiener D, Mueck A O. Different effects of estradiol and various antiestrogens on TNF-alpha-induced changes of biochemical markers for growth and invasion of human breast cancer cells.  Life Sci. 2006;  78 (13) 1464-1468

Prof. Dr. O. Ortmann

Klinik für Frauenheilkunde und Geburtshilfe
Universität Regensburg

Landshuter Str. 65

93053 Regensburg

eMail: gynaekologie@caritasstjosef.de

    >